展开全部
数列关系式
a(n+1)=√(2+an)
数学归纳法
假设递增数列即a(n+1)》an
a1=√2
n=2 a2=√(2+√2 ) a2>a1
n=k
a(k+1)>ak
n=k+1
a(k+2)=√(2+a(k+1))>a(k+1)=√(2+ak)
所以是递增数列
a(n+1)=√(2+an)>an
2+an>an²
-1〈an〈2
an〈2
so单调有界数列
这样
当n无穷大时,an的极限=a(n+1)的极限=k
k=√(2+k)
k=2
a(n+1)=√(2+an)
数学归纳法
假设递增数列即a(n+1)》an
a1=√2
n=2 a2=√(2+√2 ) a2>a1
n=k
a(k+1)>ak
n=k+1
a(k+2)=√(2+a(k+1))>a(k+1)=√(2+ak)
所以是递增数列
a(n+1)=√(2+an)>an
2+an>an²
-1〈an〈2
an〈2
so单调有界数列
这样
当n无穷大时,an的极限=a(n+1)的极限=k
k=√(2+k)
k=2
追问
当n无穷大时,an的极限=a(n+1)的极限=k
k=√(2+k)
k=2
这个能说详细一点吗
追答
当n无穷大时,an与a(n+1)的差值就不怎么大了,因为他们都接近极值了(涉及微积分,意思就是理想状况下n正无穷时,极值等于an)
在无穷大时an跟a(n+1)都等于极值了
设极值=k
解方程
any question 追问
快一点点,我马上要下线了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询