如图,正方形ABCD的对角线相交于点O,E,F分别在OA,OB上,且OE=OF,证明BE⊥CF
3个回答
展开全部
证明:延长CF与BE交与点G,
由OE=OF,OB=OC,以及角COF=角BOE,可以证明⊿COF≌⊿BOE。
所以有角OCF=角OBE。
又在⊿COF与⊿BGF中,对顶角相等。所以进一步得到:角COF=角BGF
而正方形对角线相互垂直,即角COF=90°。
所以角BGF=90°,即CG⊥BE,亦即E⊥CF。
由OE=OF,OB=OC,以及角COF=角BOE,可以证明⊿COF≌⊿BOE。
所以有角OCF=角OBE。
又在⊿COF与⊿BGF中,对顶角相等。所以进一步得到:角COF=角BGF
而正方形对角线相互垂直,即角COF=90°。
所以角BGF=90°,即CG⊥BE,亦即E⊥CF。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为正方形的两条对角线是互相垂直的,所以在这对角线上的点到四个角的线也会垂直的。(有的会重合)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询