在三角形abc中,tanA=1/2 tanb=1/3,最短边为1.求最长边
1个回答
2011-09-18 · 知道合伙人教育行家
关注
展开全部
tanA=1/2,tanB=1/3
tanC=tan[180°-(A+B)] = -tan(A+B) = -(tanA+tanB)/(1-tanAtanB) = -(1/2+1/3)/(1-1/2*1/3) = -1
C=135°
C为最大角,所对的边c为最长边
tanA>tanB
B为最小角,最短边c=1
sinB=tanB/√(1+tan^2B)=(1/3)/√{1+(1/3)^2} = √10/10
sinC=sin135°=√2/2
c/sinC = b/sinB
c = bsinC/sinB = 1*(√2/2)/(√10/10) = √5
最长边√5
tanC=tan[180°-(A+B)] = -tan(A+B) = -(tanA+tanB)/(1-tanAtanB) = -(1/2+1/3)/(1-1/2*1/3) = -1
C=135°
C为最大角,所对的边c为最长边
tanA>tanB
B为最小角,最短边c=1
sinB=tanB/√(1+tan^2B)=(1/3)/√{1+(1/3)^2} = √10/10
sinC=sin135°=√2/2
c/sinC = b/sinB
c = bsinC/sinB = 1*(√2/2)/(√10/10) = √5
最长边√5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询