在正方体ABCD—A1B1C1D1中E,F,G,H分别是BC,CC1,C1D1,A1A的中点 求证BF平行于HD1(2)EG平行于平面BB1D1D

Wiityman
2011-09-19 · TA获得超过6696个赞
知道大有可为答主
回答量:901
采纳率:0%
帮助的人:537万
展开全部

(1) 取BB1的中点为M.连接HM,MC1. 由于HM平行且等于A1B1,平行且等于D1C1,知HMC1D1为平行四边形.故HD1//MC1,  又易知BMC1F为平行四边形.,推出:BF//MC1.

由此即得HD1//BF.

(2)连接B1D1,取其中点为N,连接GN,由中位线定理知:GN平行且等于B1C1的一半,而B1C1//BC,

且B1C1=BC,故推出 :GN//BC,且GN = (1/2)BC = BE, 即知BEGN为平行四边形.从而EG//BN.

而BN在平面BB1D1D内. 即推出EG平行于平面BB1D1D.(若一直线平行于平面内的某一直线,则该直线就平行于这个平面)

温暖我来给
2011-09-25
知道答主
回答量:1
采纳率:0%
帮助的人:1714
展开全部
(1) 取BB1的中点为M.连接HM,MC1. 由于HM平行且等于A1B1,平行且等于D1C1,知HMC1D1为平行四边形.故HD1//MC1, 又易知BMC1F为平行四边形.,推出:BF//MC1.
由此即得HD1//BF.
(2)连接B1D1,取其中点为N,连接GN,由中位线定理知:GN平行且等于B1C1的一半,而B1C1//BC,
且B1C1=BC,故推出 :GN//BC,且GN = (1/2)BC = BE, 即知BEGN为平行四边形.从而EG//BN.
而BN在平面BB1D1D内. 即推出EG平行于平面BB1D1D.(若一直线平行于平面内的某一直线,则该直线就平行于这个平面)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式