已知|ab-2|与|b-1|互为相反数,试求代数式1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+~~+1/(a+2008)(b+2008)的值
展开全部
因为|ab-2|与|b-1|互为相反数,所以|ab-2|+b-1|=0,
所以b-1=0,ab-2=0解得a=2,b=1
由于1/n(n+1)=1/n - 1/(n+1)
所以1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+~~+1/(a+2008)(b+2008)
=1/(1*2)+1/(2*3)+1/(3*4)+~~+1/(2009*2010)
=1-1/2+1/2-1/3+1/3-1/4+~~+1/2008-1/2009+1/2009-1/2010
=1-1/2010
=2009/2010
所以b-1=0,ab-2=0解得a=2,b=1
由于1/n(n+1)=1/n - 1/(n+1)
所以1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+~~+1/(a+2008)(b+2008)
=1/(1*2)+1/(2*3)+1/(3*4)+~~+1/(2009*2010)
=1-1/2+1/2-1/3+1/3-1/4+~~+1/2008-1/2009+1/2009-1/2010
=1-1/2010
=2009/2010
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询