在三角形ABC中,AB=CB,角ABC=90度,D是AB上的一点,AE垂直CD于点E,且AE=二分之一CD,BD=8CM,求点D到AC的距离
2个回答
2011-09-24
展开全部
延长AE,CB交于P,作DF⊥AC交AC于F,
∵AB=BC,
∠DBC=∠PBA=90°,
∠BCD=∠BAP,
∴△BCD≌△BAP(A,S,A),
∴AP=CD,由AE=1/2CD,
∴AE=PE,即E是AP的中点,
∴△AEC≌△PEC,(S,A,S),
∴DC是∠C的平分线,
∴DF=DB=8.
∵AB=BC,
∠DBC=∠PBA=90°,
∠BCD=∠BAP,
∴△BCD≌△BAP(A,S,A),
∴AP=CD,由AE=1/2CD,
∴AE=PE,即E是AP的中点,
∴△AEC≌△PEC,(S,A,S),
∴DC是∠C的平分线,
∴DF=DB=8.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询