设等差数列{an}公差d是2,前n项和为Sn,则lim(an^2-n^2)/Sn

攞你命三千
2011-09-20 · TA获得超过1.9万个赞
知道大有可为答主
回答量:9624
采纳率:61%
帮助的人:2621万
展开全部
S(n)=n[a(1)+a(n)]2=na(1)+n(n-1)d/2=na(1)+n(n-1)
a(n)^2-n^2=[a(1)+(n-1)d]^2-n^2=a(1)^2+4(n-1)a(1)+4(n-1)^2-n^2
所以
lim(a(n)^2-n^2)/S(n)
=lim[na(1)+n(n-1)]/[a(1)^2+4(n-1)a(1)+4(n-1)^2-n^2]
=lim[a(1)/n+(1-1/n)]/{[a(1)/n]^2+4(1-1/n)a(1)/n+4(1-1/n)^2-1}
=(0+1-0)/[0+4×(1-0)×0+4×(1-0)^2-1]
=1/3
AI数码小助手
2019-04-04 · TA获得超过3636个赞
知道大有可为答主
回答量:3042
采纳率:31%
帮助的人:432万
展开全部
a(n)=a+(n-1)d,[a(n)]^2=[a+(n-1)d]^2=[nd+a-d]^2,
s(n)=na+n(n-1)d/2=(d/2)n^2+n(a-d/2),
当d=0时,a(n)=a,s(n)=na.
当d=0,a=0时,s(n)/[a(n)]^2没有意义。
当d=0,a不等于0时,s(n)/[a(n)]^2=n/a,lim(n->无穷大){s(n)/[a(n)]^2}=(n->无穷大){n/a}=正无穷大。
d不等于0时,
s(n)/[a(n)]^2=[(d/2)n^2+n(a-d/2)]/[nd+a-d]^2=[d/2+(a-d/2)/n]/[d+(a-d)/n]^2,
lim(n->无穷大){s(n)/[a(n)]^2}=lim(n->无穷大){[d/2+(a-d/2)/n]/[d+(a-d)/n]^2}=(d/2)/d^2=1/(2d)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式