如图,在△ABC中,AB=AC,AD⊥BD,AE⊥CE,且AD=AE,BD和CE交于点O,请说明OB=OC
7个回答
展开全部
解:成立
∵AB=AC,
∴∠ABC=∠ACB.
∵BD、CE分别是高,
∴BD⊥AC,CE⊥AB.
∴∠CEB=∠BDC=90°.
∴∠ECB=90°-∠ACB,∠DBC=90°-∠ABC.
∴∠ECB=∠DBC.
∴OB=OC.
∵AB=AC,
∴∠ABC=∠ACB.
∵BD、CE分别是高,
∴BD⊥AC,CE⊥AB.
∴∠CEB=∠BDC=90°.
∴∠ECB=90°-∠ACB,∠DBC=90°-∠ABC.
∴∠ECB=∠DBC.
∴OB=OC.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
吼吼,我们刚好今天做这个。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询