1 2 3 4 1 0 -1 -2
0 1 2 3 第一行+(-2)倍第二行 0 1 2 3
0 0 0 0 ______________________-→ 0 0 0 0
0 0 0 0 0 0 0 0
则 X1=-X3+(-2)X4
X2=2X3+3X4
X3=C1
X4=C2
则基础解析为
X1 -1 -2
X2===2 C1 + 3 C2
X3 1 0
X4 0 1
扩展资料
基础解系和通解的关系
对于一个方程组,有无穷多组的解来说,最基础的,不用乘系数的那组方程的解,如(1,2,3)和(2,4,6)及(3,6,9)以及(4,8,12)......等均符合方程的解,则系数K为1,2,3,4.....等,因此(1,2,3)就为方程组的基础解系。
A是n阶实对称矩阵,
假如r(A)=1.则它的特征值为t1=a11+a22+...+ann,t2=t3=...tn=0;对应于t1的特征向量为b1,t2~tn的分别为b2~bn
此时,Ax=0的解就是k2b2+k3b3+...+knbn;其中ki不全为零。由于:Ax=0Ax=0*B,B为A的特征向量,对应一个特征值的特征向量写成通解的形式是乘上ki并加到一起。这是基础解系和通解的关系。
基础解系是线性无关的,简单的理解就是能够用它的线性组合表示出该方程组的任意一组解,是针对有无数多组解的方程而言的。基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解系之间必定对应着某种线性关系。
基础解系是针对有无数多组解的方程而言,若是齐次线性方程组则应是有效方程的个数少于未知数的个数,若非齐次则应是系数矩阵的秩等于增广矩阵的秩,且都小于未知数的个数。
参考资料:百度百科 基础解系
2021-01-25 广告
3210
0321
1234