已知正方体ABCD-A1B1C1D1的棱长为a,求二面角A1-BD1-C1的大小
3个回答
展开全部
连接AD1;BD1;B1D1;PD1;取BD1中点E;在面ABD1上过E做EF⊥DB1交AD1于F;连接PF;EF;PE;
勾股定理
BP=D1P=√5/2;
AD1=B1D1=√2;
BD1=√3;
∵BP=D1P=√5/2;BE=D1E;
∴PE⊥BD1;∵EF⊥DB1;
∴∠FEP就是二面角A-BD1-P;
在△ABD1中;
BD1^2=3;
AB^2=1;
AD1^2=2;
BD1^2=AD1^2+AB^2;
△ABD1为直角三角形;∠BAD1=90°;
∴△ABD1∽△EFD1;
根据比例性质,求得:
EF=√6/4;
AF=√2/4;
△APF中;AP=1/2;AF=√2/4;∠PAF=45°;∴PF=AF=√2/4;
PE=√2/2;
PF^2+EF^2=PE^2;
△PEF是直角三角形;
PF=1/2PE;
∴∠PEF=30°;
二面角A-BD1-P的大小为30°
勾股定理
BP=D1P=√5/2;
AD1=B1D1=√2;
BD1=√3;
∵BP=D1P=√5/2;BE=D1E;
∴PE⊥BD1;∵EF⊥DB1;
∴∠FEP就是二面角A-BD1-P;
在△ABD1中;
BD1^2=3;
AB^2=1;
AD1^2=2;
BD1^2=AD1^2+AB^2;
△ABD1为直角三角形;∠BAD1=90°;
∴△ABD1∽△EFD1;
根据比例性质,求得:
EF=√6/4;
AF=√2/4;
△APF中;AP=1/2;AF=√2/4;∠PAF=45°;∴PF=AF=√2/4;
PE=√2/2;
PF^2+EF^2=PE^2;
△PEF是直角三角形;
PF=1/2PE;
∴∠PEF=30°;
二面角A-BD1-P的大小为30°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用向量法 画坐标 求出两个面的法向量 把两平面的法向量n1,n2的坐标求出来。然后根据n1·n2=|n1||n2|cosα,θ=α为两平面的夹角。这里需要注意的是如果两个法向量都是垂直平面,指向两平面内,所求两平面的夹角θ=π-α
追问
那个,能不能不用向量,我们还没学呢
追答
△A1D1B和△C1D1B全等 做A1E垂直BD1连接C1E
边角边证明△A1D1E和△C1D1E也全等 所以C1E垂直BD1
A1E⊥BD1 C1E⊥BD1
所以这个二面角的大小就是角A1EC1的大小
求出A1E C1E A1C1
余弦定理求出角A1EC1=120°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询