请问以下这条n阶行列式怎么解?

Dn=|xyyy...y||zxyy.....y||zzxy.....y||z...xy||zzz......x|... Dn=| x y y y ... y|
| z x y y.....y|
| z z x y .....y|
| z ...x y|
| z z z ... ...x|
展开
lry31383
高粉答主

2011-09-24 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
解: D =
z+(x-z) y y ... y
z x y ... y
z z x ... y
... ...
z z z ... x
= D1 + D2.

D1 =
x-z y y ... y
0 x y ... y
0 z x ... y
0 ... ...
0 z z ... x
= (x-z) Dn-1

D2 =
z y y ... y y
z x y ... y y
z z x ... y y
... ...
z z z ... x y
z z z ... z x

第 1列提出z, 然后第1列乘(-y)加到其余各列, 得
D2 = z(x-y)^(n-1)

所以有
D = D1 + D2 = (x-z) Dn-1 +z(x-y)^(n-1)
因为行列式的值等于其转置行列式, 所以有
D = (x-y)Dn-1 +y(x-z)^(n-1)
两式消去 Dn-1 得
D = [y(x-z)^n - z(x-y)^n]/(y-z).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式