8年级数学 全等三角形的判定 。。证明过程是根据什么写出来的。???
展开全部
边边边。边角边。角边角。角角边。 能够完全重合的两个图形叫全等形。
知识点二:全等三角形
要点诠释:
能够完全重合的两个三角形叫全等三角形
知识点三:对应顶点,对应边,对应角
要点诠释:
两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角。
知识点四:全等三角形的性质
要点诠释:
全等三角形对应边相等,对应角相等
知识点五:三角形全等的判定定理(一)
要点诠释:
三边对应相等的两个三角形全等。简写成“边边边”或“SSS”
知识点六:三角形全等的判定定理(二)
要点诠释:
两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS”
知识点七:三角形全等的判定定理(三)
要点诠释:
两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”
知识点八:三角形全等的判定定理(四)
要点诠释:
两个角和其中一个角的对边对应相等的两个三角形全等。简写成“角角边”或“AAS”
知识点九:直角三角形全等的判定定理
要点诠释:
斜边和一条直角边对应相等的两个直角三角形全等。简写成“斜边、直角边”或“HL”
三、规律方法指导
1.探索三角形全等的条件:
(1)一般三角形全等的判定方法有四种方法:①边角边(SAS);②角边角(ASA);③角角边(AAS);④边
边边(SSS).
(2)直角三角形的全等的条件:除了使用SAS、ASA、AAS、SSS判定方法外,还有一种重要的判定方法,
也就是斜边、直角边(HL)判定方法.
2.判定两个三角形全等指导
(1)已知两边
(2)已知一边一角
(3)已知两角
3.经验与提示:
⑴寻找全等三角形对应边、对应角的规律
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.
③有公共边的,公共边一定是对应边.
④有公共角的,公共角一定是对应角.
⑤有对顶角的,对顶角是对应角.
⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)
⑵找全等三角形的方法
①可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;
②可以从已知条件出发,看已知条件可以确定哪两个三角形全等;
③从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;
④若上述方法均不行,可考虑添加辅助线,构造全等三角形。
⑶证明线段相等的方法
①中点定义;
②等式的性质;
③全等三角形的对应边相等;
④借助中间线段(即要证a=b,只需证a=c,c=b即可)。随着知识深化,今后还有其它方法。
⑷证明角相等的方法
①对顶角相等;
②同角(或等角)的余角(或补角)相等;
③两直线平行,同位角、内错角相等;
④等式的性质;
⑤垂直的定义;
⑥全等三角形的对应角相等;
三角形的外角等于与它不相邻的两内角和。随着知识的深化,今后还有其它的方法。
⑸证垂直的常用方法
①证明两直线的夹角等于90°;
②证明邻补角相等;
③若三角形的两锐角互余,则第三个角是直角;
④垂直于两条平行线中的一条直线,也必须垂直另一条。
⑤证明此角所在的三角形与已知直角三角形全等;
⑥邻补角的平分线互相垂直。
⑹全等三角形中几个重要结论
①全等三角形对应角的平分线相等;
②全等三角形对应边上的中线相等;
③全等三角形对应边上的高相等。
4.知识的应用
(1)全等三角形的性质的应用:根据三角形全等找对应边,对应角,进而计算线段的长度或角的度数.
(2)全等三角形判定方法的应用:根据判定方法说明两个三角形全等,进一步根据性质说明线段相等
或角相等.
(3)用全等三角形测量距离的步骤:①先明确要解决什么实际问题;②选用全等三角形的判定方法构
造全等三角形;③说明理由.
5.注意点
(1)书写全等三角形时一般把对应顶点的字母放在对应的位置.
(2)三角形全等的判别方法中不存在“SSA”、“AAA”的形式,判别三角形全等的条件中至少有一条
边.
(3)寻找三角形全等的条件时,要结合图形,挖掘图中的隐含条件:如公共边、公共角、对顶角、中
点、角平分线、高线等所带来的相等关系.
(4)运用三角形全等测距离时,应注意分析已知条件,探索三角形全等的条件,理清要测定的距离,
画出符合的图形,根据三角形全等说明测量理由.
(5)注意只有说明两个直角三角形全等时,才使用“HL”,说明一般的三角形全等不能使用“HL”.
6.数学思想方法
(1)转化思想:如将实际问题转化数学问题解决等.
(2)方程思想:如通过设未知数,根据三角形内角和之间的关系构造方程解决角度问题.
可以了吧。。。
知识点二:全等三角形
要点诠释:
能够完全重合的两个三角形叫全等三角形
知识点三:对应顶点,对应边,对应角
要点诠释:
两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角。
知识点四:全等三角形的性质
要点诠释:
全等三角形对应边相等,对应角相等
知识点五:三角形全等的判定定理(一)
要点诠释:
三边对应相等的两个三角形全等。简写成“边边边”或“SSS”
知识点六:三角形全等的判定定理(二)
要点诠释:
两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS”
知识点七:三角形全等的判定定理(三)
要点诠释:
两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”
知识点八:三角形全等的判定定理(四)
要点诠释:
两个角和其中一个角的对边对应相等的两个三角形全等。简写成“角角边”或“AAS”
知识点九:直角三角形全等的判定定理
要点诠释:
斜边和一条直角边对应相等的两个直角三角形全等。简写成“斜边、直角边”或“HL”
三、规律方法指导
1.探索三角形全等的条件:
(1)一般三角形全等的判定方法有四种方法:①边角边(SAS);②角边角(ASA);③角角边(AAS);④边
边边(SSS).
(2)直角三角形的全等的条件:除了使用SAS、ASA、AAS、SSS判定方法外,还有一种重要的判定方法,
也就是斜边、直角边(HL)判定方法.
2.判定两个三角形全等指导
(1)已知两边
(2)已知一边一角
(3)已知两角
3.经验与提示:
⑴寻找全等三角形对应边、对应角的规律
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.
②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.
③有公共边的,公共边一定是对应边.
④有公共角的,公共角一定是对应角.
⑤有对顶角的,对顶角是对应角.
⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)
⑵找全等三角形的方法
①可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;
②可以从已知条件出发,看已知条件可以确定哪两个三角形全等;
③从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;
④若上述方法均不行,可考虑添加辅助线,构造全等三角形。
⑶证明线段相等的方法
①中点定义;
②等式的性质;
③全等三角形的对应边相等;
④借助中间线段(即要证a=b,只需证a=c,c=b即可)。随着知识深化,今后还有其它方法。
⑷证明角相等的方法
①对顶角相等;
②同角(或等角)的余角(或补角)相等;
③两直线平行,同位角、内错角相等;
④等式的性质;
⑤垂直的定义;
⑥全等三角形的对应角相等;
三角形的外角等于与它不相邻的两内角和。随着知识的深化,今后还有其它的方法。
⑸证垂直的常用方法
①证明两直线的夹角等于90°;
②证明邻补角相等;
③若三角形的两锐角互余,则第三个角是直角;
④垂直于两条平行线中的一条直线,也必须垂直另一条。
⑤证明此角所在的三角形与已知直角三角形全等;
⑥邻补角的平分线互相垂直。
⑹全等三角形中几个重要结论
①全等三角形对应角的平分线相等;
②全等三角形对应边上的中线相等;
③全等三角形对应边上的高相等。
4.知识的应用
(1)全等三角形的性质的应用:根据三角形全等找对应边,对应角,进而计算线段的长度或角的度数.
(2)全等三角形判定方法的应用:根据判定方法说明两个三角形全等,进一步根据性质说明线段相等
或角相等.
(3)用全等三角形测量距离的步骤:①先明确要解决什么实际问题;②选用全等三角形的判定方法构
造全等三角形;③说明理由.
5.注意点
(1)书写全等三角形时一般把对应顶点的字母放在对应的位置.
(2)三角形全等的判别方法中不存在“SSA”、“AAA”的形式,判别三角形全等的条件中至少有一条
边.
(3)寻找三角形全等的条件时,要结合图形,挖掘图中的隐含条件:如公共边、公共角、对顶角、中
点、角平分线、高线等所带来的相等关系.
(4)运用三角形全等测距离时,应注意分析已知条件,探索三角形全等的条件,理清要测定的距离,
画出符合的图形,根据三角形全等说明测量理由.
(5)注意只有说明两个直角三角形全等时,才使用“HL”,说明一般的三角形全等不能使用“HL”.
6.数学思想方法
(1)转化思想:如将实际问题转化数学问题解决等.
(2)方程思想:如通过设未知数,根据三角形内角和之间的关系构造方程解决角度问题.
可以了吧。。。
展开全部
全等三角形里对应元素主要指对应边和对应角。但是,其实对应中线、对应角平分线、对应高、对应内切圆半径等等都可以称对应元素。只要是两个三角形对应位置的对应几何元素均可称对应元素。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明过程的写法就是定理,公理的列举过程,由A推B,就是这样的感觉,就像是破案一样,是怎么推出来答案的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
边边边。边角边。角边角。角角边。 0能够完全重合的两个图形叫全等形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
SAS SSS ASA AAS HL
多背背定义定理,看多了自然理解了、
多背背定义定理,看多了自然理解了、
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |