
大一数学难题求解,要过程。 lim(1/(n^3+1) + 4/(n^3+4)+...+n^2/(n^3+n^2)) n->∞
3个回答
2011-09-25
展开全部
可以用两边夹法则:
因为
1^2/(n^3+1)+2^2/(n^3+2)+...+n^2/(n^3+n) (把分母放缩成n^3+1)
<=1^2/(n^3+1)+2^2/(n^3+1)+...+n^2/(n^3+1)
(利用1^2+...+n^2=1/6*n(n+1)(2n+1))
=[1/6*n(n+1)(2n+1)]/(n^3+1) (1)
另一方面,
1^2/(n^3+1)+2^2/(n^3+2)+...+n^2/(n^3+n) (把分母放缩成n^3+n)
>=1^2/(n^3+n)+2^2/(n^3+n)+...+n^2/(n^3+n)
=[1/6*n(n+1)(2n+1)]/(n^3+n) (2)
注意到n趋于无穷时,(1)(2)两式的极限都是1/3, 所以原式的极限就是1/3.
因为
1^2/(n^3+1)+2^2/(n^3+2)+...+n^2/(n^3+n) (把分母放缩成n^3+1)
<=1^2/(n^3+1)+2^2/(n^3+1)+...+n^2/(n^3+1)
(利用1^2+...+n^2=1/6*n(n+1)(2n+1))
=[1/6*n(n+1)(2n+1)]/(n^3+1) (1)
另一方面,
1^2/(n^3+1)+2^2/(n^3+2)+...+n^2/(n^3+n) (把分母放缩成n^3+n)
>=1^2/(n^3+n)+2^2/(n^3+n)+...+n^2/(n^3+n)
=[1/6*n(n+1)(2n+1)]/(n^3+n) (2)
注意到n趋于无穷时,(1)(2)两式的极限都是1/3, 所以原式的极限就是1/3.
展开全部
用夹逼定理
1/(n³+n²)+2²/(n³+n²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+1)+…+n²/(n³+1)
(1+2²+…+n²)/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤(1+2²+…n²)/(n³+n²)
n(n+1)(2n+1)/[6(n³+n²)]≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤n(n+1)(2n+2)/[6(n³+n²)]
lim<n→∞>n(n+1)(2n+1)/[6(n³+n²)]=1/3
lim<n→∞>n(n+1)(2n+2)/[6(n³+n²)]=1/3
所以lim<n→∞>1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)=1/3
1/(n³+n²)+2²/(n³+n²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+1)+…+n²/(n³+1)
(1+2²+…+n²)/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤(1+2²+…n²)/(n³+n²)
n(n+1)(2n+1)/[6(n³+n²)]≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤n(n+1)(2n+2)/[6(n³+n²)]
lim<n→∞>n(n+1)(2n+1)/[6(n³+n²)]=1/3
lim<n→∞>n(n+1)(2n+2)/[6(n³+n²)]=1/3
所以lim<n→∞>1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)=1/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
无解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询