求函数值域的方法。
展开全部
定义域是函数y=f(x)中的自变量x的范围。
求函数的定义域需要从这几个方面入手:
(1),分母不为零 (2)偶次根式的被开方数蠢穗非负。
(3),对数中的真数部分大于0。
(4),指数、对数的底数大于0,且不等于1
(5)。y=tanx中x≠kπ+π/2,
y=cotx中x≠kπ等等。
值域是函数y=f(x)中y的取值范围。
常用的求值域的方法:
(1)化归法;(2)图象法(数形结合),
(3)函数单调性帆枝法,
(4)配方法带轿卜,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
求函数的定义域需要从这几个方面入手:
(1),分母不为零 (2)偶次根式的被开方数蠢穗非负。
(3),对数中的真数部分大于0。
(4),指数、对数的底数大于0,且不等于1
(5)。y=tanx中x≠kπ+π/2,
y=cotx中x≠kπ等等。
值域是函数y=f(x)中y的取值范围。
常用的求值域的方法:
(1)化归法;(2)图象法(数形结合),
(3)函数单调性帆枝法,
(4)配方法带轿卜,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等
展开全部
1:直接法:从自变量的范围出发丛袜,推出值域,也就是直接看咯。这个不用例题了吧?
2:分离常数法
例题:y=(1-x^2)/(1+x^2)
解,y=(1-x^2)/(1+x^2)
=2/(1+x^2)-1
∵1+x^2≥1,∴0<2/(1+x^2)≤2
∴-1<
y≤1
即y∈(-1,1】
3:配方法(或者说是最值法)
求出最大值还有最小值,那么值域不就出来了吗。
例题:y=x^2+2x+3
x∈【-1,2】
先配方,得y=(x+1)^2+1
∴ymin=(-1+1)^2+2=2
ymax=(2+1)^2+2=11
4:判别式法,运用方程思想,根据二次方程有实根求值域
不好意思,当初做笔记的时候忘首铅记抄例题了,不过这种方法不是很常用。
5:换元法:适用于有根号的函数
例题:y=x-√(1-2x)
设√(1-2x)=t(t≥0)
∴x=(1-t^2)/2
∴y=(1-t^2)/2-t
=-t^2/2-t+1/2
=-1/2(t+1)^2+1
∵t≥0,∴y∈(-∝,1/2)
6:图像法,直接画图看值域
例题:y=|x+1|+√(x-2)^2
这是一个分段函数,你画出图后就可以一眼看出值域。
7:反函数法。求反函数的定义域,就是者郑好原函数的值域。
例题:y=(3x-1)/(3x-2)
先求反函数y=(2x-1)/(3x-3)
明显定义域为x≠1
所以原函数的值域为y≠1
2:分离常数法
例题:y=(1-x^2)/(1+x^2)
解,y=(1-x^2)/(1+x^2)
=2/(1+x^2)-1
∵1+x^2≥1,∴0<2/(1+x^2)≤2
∴-1<
y≤1
即y∈(-1,1】
3:配方法(或者说是最值法)
求出最大值还有最小值,那么值域不就出来了吗。
例题:y=x^2+2x+3
x∈【-1,2】
先配方,得y=(x+1)^2+1
∴ymin=(-1+1)^2+2=2
ymax=(2+1)^2+2=11
4:判别式法,运用方程思想,根据二次方程有实根求值域
不好意思,当初做笔记的时候忘首铅记抄例题了,不过这种方法不是很常用。
5:换元法:适用于有根号的函数
例题:y=x-√(1-2x)
设√(1-2x)=t(t≥0)
∴x=(1-t^2)/2
∴y=(1-t^2)/2-t
=-t^2/2-t+1/2
=-1/2(t+1)^2+1
∵t≥0,∴y∈(-∝,1/2)
6:图像法,直接画图看值域
例题:y=|x+1|+√(x-2)^2
这是一个分段函数,你画出图后就可以一眼看出值域。
7:反函数法。求反函数的定义域,就是者郑好原函数的值域。
例题:y=(3x-1)/(3x-2)
先求反函数y=(2x-1)/(3x-3)
明显定义域为x≠1
所以原函数的值域为y≠1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
求值域,需要明确y=f(x)的方程式,然后通过定义域x的范围,分析y的情况,计算值域范围。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先求该函数的定义域'再进行求值仿唯域:
1:直接没大戚看
2:图像法枯陵
3:换元法
1:直接没大戚看
2:图像法枯陵
3:换元法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询