关于间断点的问题,f(x)=(e^(1/x)-1)/(e^(1/x)+1),则x=0是f(x)的( )A、可去间断点,B、跳跃间断点,

C、第二类间断点,D、连续点我知道答案是B,但是我算的是A,f(X)只有一个解析式,为啥趋于0-和0+的结果不同,请详细解答这左右连续的计算过程及为什么,本人基础不好,希... C、第二类间断点,D、连续点 我知道答案是B,但是我算的是A,f(X)只有一个解析式,为啥趋于0-和0+的结果不同,请详细解答这左右连续的计算过程及为什么,本人基础不好,希望高手指点,谢谢。 展开
xiaoyu771479
2011-09-26 · TA获得超过740个赞
知道答主
回答量:58
采纳率:0%
帮助的人:107万
展开全部
这种情况是特例!数学里有几个这样的例子!可以找老师问一下都是哪些特例,这样以后碰到相似的就可以注意啦!

我们知道e^x 当x—>∞时, e^x=∞ ; 当x—> -∞时,e^x=0
难么这道题跟e^x不是一样的么?只是x变成了1/x而已
x—>+0时,1/x—>∞ 则e^1/x=∞ f(x)=1-2/(e^1/x+1)=1
x—>-0时,1/x—> -∞ 则e^1/x =0 f(x)=-1
x—>+0,x—>-0时,函数极限都存在,但是极限值不相等,所以x=0为跳跃间断点。

类似的情况例如还有arctanx lgx 以及它们的变形形式等等
x—>∞,arctanx=π/2 x—>∞,lgx=∞
x—>-∞,arctanx= -π/2 x—>0,lgx=0

这些都是需要记一记的,不然稍不注意就中了圈套啦!
请教老师把所有的这种特例掌握了,就不怕啦!
lcwang0635
2011-09-26 · TA获得超过111个赞
知道答主
回答量:49
采纳率:0%
帮助的人:42.6万
展开全部
x+0:e^(1/x) ---> +无穷
x-0:e^(1/x) ---> 0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式