证明逆矩阵的问题(急!!在线等)
设n阶矩阵A满足A^2-7A-6E=0(A^2为A*A,E为单位矩阵)证明A和A+2E都可逆,求A^-1,(A-2E)^-1(求A的逆矩阵和A-2E的逆矩阵...
设n阶矩阵A满足A^2-7A-6E=0(A^2为A*A,E为单位矩阵)
证明A和A+2E都可逆,求A^-1,(A-2E)^-1(求A的逆矩阵和A-2E的逆矩阵 展开
证明A和A+2E都可逆,求A^-1,(A-2E)^-1(求A的逆矩阵和A-2E的逆矩阵 展开
2个回答
展开全部
因为A²-7A-6E=0
所以A(A-7E)=6E
即A[(A-7E)/6]=E
所以A可逆,A^-1=(A-7E)/6
A²-7A-6E=0
A²-7(A+2E)+8E=0
A²-4E-7(A+2E)+12E=0
(A-2E)(A+2E)-7(A+2E)=-12E
(A-9E)(A+2E)=-12E
即[(A-9E)/(-12)](A+2E)=E
所以A+2E可逆,(A+2E)^-1=-(A-9E)/12
A²-7A-6E=0
A²-7(A-2E)-20E=0
A²-4E-7(A-2E)=16E
(A+2E)(A-2E)-7(A-2E)=16E
(A-5E)(A-2E)=16E
即[(A-5E)/16](A-2E)=E
所以(A-2E)^-1=(A-5E)/16
所以A(A-7E)=6E
即A[(A-7E)/6]=E
所以A可逆,A^-1=(A-7E)/6
A²-7A-6E=0
A²-7(A+2E)+8E=0
A²-4E-7(A+2E)+12E=0
(A-2E)(A+2E)-7(A+2E)=-12E
(A-9E)(A+2E)=-12E
即[(A-9E)/(-12)](A+2E)=E
所以A+2E可逆,(A+2E)^-1=-(A-9E)/12
A²-7A-6E=0
A²-7(A-2E)-20E=0
A²-4E-7(A-2E)=16E
(A+2E)(A-2E)-7(A-2E)=16E
(A-5E)(A-2E)=16E
即[(A-5E)/16](A-2E)=E
所以(A-2E)^-1=(A-5E)/16
展开全部
因为 A^2-7A-6E=0
所以 A(A-7E) = 6E
所以 A 可逆 且 A^-1 = (1/6)(A-7E)
由 A^2-7A-6E=0
得 A(A+2E) -9(A+2E) + 12E = 0
所以 (A-9E)(A+2E) = -12E
所以 A+2E 可逆 且 (A+2E)^-1 = (-1/12)(A-9E).
由 A^2-7A-6E=0
得 A(A-2E) -5(A-2E) -16E = 0
所以 (A-5E)(A-2E) = 16E
所以 A-2E 可逆 且 (A-2E)^-1 = (1/16)(A-5E).
所以 A(A-7E) = 6E
所以 A 可逆 且 A^-1 = (1/6)(A-7E)
由 A^2-7A-6E=0
得 A(A+2E) -9(A+2E) + 12E = 0
所以 (A-9E)(A+2E) = -12E
所以 A+2E 可逆 且 (A+2E)^-1 = (-1/12)(A-9E).
由 A^2-7A-6E=0
得 A(A-2E) -5(A-2E) -16E = 0
所以 (A-5E)(A-2E) = 16E
所以 A-2E 可逆 且 (A-2E)^-1 = (1/16)(A-5E).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询