有关线性代数特征值求法概念问题
Ax=入x(A-入I)x=0/A-入I/=0(A-入I)x=0是齐次线性方程组,x为非零向量,入为非零常数,使得方程成立,也就是说,x的解不唯一,系数阵的非零子式最高阶数...
Ax=入x
(A-入I)x=0
/A-入I/=0
(A-入I)x=0是齐次线性方程组,x为非零向量,入为非零常数,使得方程成立,也就是说,x的解不唯一,系数阵的非零子式最高阶数小于未知数,得/A-入I/=0
但是,x为非零向量就决定了解不唯一,但系数阵的非零子式最高阶数可以等于未知数个数啊,一个非零解不也是解唯一吗? 展开
(A-入I)x=0
/A-入I/=0
(A-入I)x=0是齐次线性方程组,x为非零向量,入为非零常数,使得方程成立,也就是说,x的解不唯一,系数阵的非零子式最高阶数小于未知数,得/A-入I/=0
但是,x为非零向量就决定了解不唯一,但系数阵的非零子式最高阶数可以等于未知数个数啊,一个非零解不也是解唯一吗? 展开
展开全部
齐次线性方程御岩败组 (A-入I)x=0 有非零解时, 就有无穷的解
系数阵的非零子式最高阶数可以等于未知数个数时, 齐次线性方程组(A-入I)x=0 只有零解
这时 λ 不是特征值.
总之, λ是特征值的充分枣昌必要镇颤条件是 |A-λE| = 0.
系数阵的非零子式最高阶数可以等于未知数个数时, 齐次线性方程组(A-入I)x=0 只有零解
这时 λ 不是特征值.
总之, λ是特征值的充分枣昌必要镇颤条件是 |A-λE| = 0.
更多追问追答
追问
为什么齐次线性方程组 (A-入I)x=0 有非零解时, 就有无穷的解?
追答
这是因为 齐次线性方程组 的解的线性组合 仍是方程组的解
比如: 若 x是解向量, 则kx也是解向量(k为任意常数)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询