如图所示,已知三角形ABC的周长是40,BO与CO分别平分角ABC和角ACB,OD垂直BC与D,切OD=6,求三角形ABC面积
4个回答
展开全部
O是角平分线交点,到三个边的距离相等,所以三角形面积是三个小三角形AOC,BOC,AOB之和,也就是120
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:连接AO,作OE垂直于AB,OF垂直于AC
根据角平分线的性质有:OE=OD=OF=4
AB+BC+CA=15
S(ABC)=S(OAB)+S(OAC)+S(OBC)=1/2*AB*OE+1/2*AC*OF+1/2*BC*OD
=1/2*OD*(AB+BC+CA)
=1/2*4*15
=30
即三角形ABC的面积是30
根据角平分线的性质有:OE=OD=OF=4
AB+BC+CA=15
S(ABC)=S(OAB)+S(OAC)+S(OBC)=1/2*AB*OE+1/2*AC*OF+1/2*BC*OD
=1/2*OD*(AB+BC+CA)
=1/2*4*15
=30
即三角形ABC的面积是30
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接AO,作OE⊥AB,OF⊥AC.
∵OE=OD=OF=6(角平分线上的点到角两边的距离相等)
AB+AC+BC=40(已知)
∴S△ABC=S△ABO+S△ACO+S△BOC
=1/2×AB×OE+1/2×AC×OF+1/2×BC×OD
=1/2×OD(AB+BC+AC)
=6×20
=120
∴S△ABC=120
∵OE=OD=OF=6(角平分线上的点到角两边的距离相等)
AB+AC+BC=40(已知)
∴S△ABC=S△ABO+S△ACO+S△BOC
=1/2×AB×OE+1/2×AC×OF+1/2×BC×OD
=1/2×OD(AB+BC+AC)
=6×20
=120
∴S△ABC=120
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询