已知数列{an}前n项和为sn,且sn=2an-1,数列{bn}满足b1=2,bn+1=an+bn求an,b

1071145376
2011-10-01 · 超过10用户采纳过TA的回答
知道答主
回答量:29
采纳率:0%
帮助的人:23万
展开全部
令n=1所以s1=a1,可得a1=1
同样,sn=2an-1,sn-1=2a(n-1)-1
两式做差
所以an=2an-1
an=2^(n-1)
所以b(n+1)=bn+2^(n-1)
b(n+1)-bn=2^(n)-1
用累加法
bn+1=2^(n)-1+b1
所以bn=2^(n)+1
推到然后
2011-10-01 · TA获得超过282个赞
知道答主
回答量:82
采纳率:0%
帮助的人:69.2万
展开全部
先求a(n) 再求b(n)
(注 a^2 表示a的2次幂)
(i)
S(n)=2a(n)-1 (1)
n=1 a(1)=S(1), a(1)=1 (2)
S(n+1)=2a(n+1)-1 (3)
(3)-(1)
a(n+1)=2a(n+1)-2a(n)
a(n+1)=2a(n)
a(n)=2^(n-1) (4)
S(n)=2^n-1 (5)
(ii)
b(2)=a(1)+b(1)
b(3)=a(2)+b(2)
………………
b(n+1)=a(n)+b(n)
n个式子相加得
b(n+1)=S(n)+b(1)
带入式(5)有
b(n+1)=2^n+1

b(n)=2^(n-1)+1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式