是否存在常数a、b、c,使等式1*3+3*5+5*7+……+(2n-1)(2n+1)=n*(an^2+bn+c)/3对任意正整数成立?证明。

linustc
2011-10-01 · TA获得超过3997个赞
知道小有建树答主
回答量:1069
采纳率:0%
帮助的人:1659万
展开全部
1*3+3*5+5*7+……+(2n-1)(2n+1)
=(2^2-1)+(4^2-1)+……+((2n)^2-1)
=(2^2+4^2+……+(2n)^2)-(1+1+……+1)
=2^2*(1^2+2^2+……+n^2)-n
=4*n(n+1)(2n+1)/6-n
=n*[2(2n^2+3n+1)/3-1]
=n*[(4n^2+6n+2-3)/3]
=n*(4n^2+6n-1)/3
所以a=4 b=6 c=-1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式