
复合函数的奇偶性 怎么判断?
2个回答
展开全部
外奇内奇为奇,外奇内偶为偶,外偶内奇为偶,外偶内偶为偶。
追问
能举个例子 说说嘛 ?谢谢
追答
F=f(g(X)),若g(X)为偶函数,当任意取关于X对称的两点X1,-X1时,有g(X1)=g(-X1),所以f(g(X1))=f(g(-X1))。F为偶函数,因此内偶则偶。
F=f(g(X)),若g(X)为奇函数,当任意取关于X对称的两点X1,-x1时,有-g(X1)=g(-X1),所以当f为偶时,f(-g(X1))=f(g(-X1))则整体为偶。当f为奇时,-f(-gX1))=-f(g(-X1))则整体为奇。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
内偶则偶,内奇同外
F=f(g(X)),若g(X)为偶函数,当任意取关于X对称的两点X1,-X1时,有g(X1)=g(-X1),所以f(g(X1))=f(g(-X1))。F为偶函数,因此内偶则偶。
F=f(g(X)),若g(X)为奇函数,当任意取关于X对称的两点X1,-x1时,有-g(X1)=g(-X1),所以当f为偶时,f(-g(X1))=f(g(-X1))则整体为偶。当f为奇时,-f(-gX1))=-f(g(-X1))则整体为奇。
F=f(g(X)),若g(X)为偶函数,当任意取关于X对称的两点X1,-X1时,有g(X1)=g(-X1),所以f(g(X1))=f(g(-X1))。F为偶函数,因此内偶则偶。
F=f(g(X)),若g(X)为奇函数,当任意取关于X对称的两点X1,-x1时,有-g(X1)=g(-X1),所以当f为偶时,f(-g(X1))=f(g(-X1))则整体为偶。当f为奇时,-f(-gX1))=-f(g(-X1))则整体为奇。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询