有限个无穷小的和也是无穷小?
有限个无穷小之和不一定是无穷小。因为n个1/n相加(无数个无穷小之和)=n*(1/n)=1不是无穷小,所以必须有限个无穷小之和是无穷小。
无穷小是数学分析中的一个概念,用以严格定义诸如“最终会消失的量”、“绝对值比任何正数都要小的量”等非正式描述。
扩展资料:
初学者应当注意的是,无穷小量是极限为0的变量而不是数量0,是指自变量在一定变动方式下其极限为数量0,称一个函数是无穷小量,一定要说明自变量的变化趋势。例如 在 时是无穷小量,而不能笼统说 是无穷小量。也不能说无穷小是 , 是指负无穷大。
无穷小量通常用小写希腊字母表示,如α、β、ε等,有时候也用α(x)、ο(x) 等,表示无穷小量是以x为自变量的函数。
因为n个1/n相加(无数个无穷小之和)=n*(1/n)=1不是无穷小,所以必须有限个无穷小之和是无穷小。无限个无穷小之和不一定是无穷小。
假设当x趋于x0时,f1(x),f2(x)……fn(x)都趋于0,则由极限的定义可知
对于任意给出的一个正数ε,必zhuan存在一个正数δ,使得|x-x0|<δ时,|fn(x)-0|=|fn(x)|<ε成立(n为正整数)
现在任取一个正数ε,取α=ε/n,则必存在一个正数δ1,使得|x-x0|<δ1时,|f1(x)|<α
同理得到δ2,δ3……δn,取δ=min{δ1,δ2……δn}
则|x-x0|<δ时,必有|fk(x)|<ε(k=1,2,……n)
而|f1(x)+f2(x)+……+fn(x)|<|f1(x)|+|f2(x)|+……+|fn(x)|<α*n=ε
则由ε的任意性可知, lim f1(x)+f2(x)+……+fn(x)=0
命题得证
扩展资料:
有限个无穷小量之和仍是无穷小量。
有限个无穷小量之积仍是无穷小量。
有界函数与无穷小量之积为无穷小量。
特别地,常数和无穷小量的乘积也为无穷小量。
恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
参考资料来源:百度百科-无穷小量
即α+β=2α=2lim(x→0)(x),是个无穷小。
你出错的原因在于,两个无穷小的x的趋近值是不同的,一个趋近于1,一个趋近于2,不能按照其中任意一方的趋近值来带入,要分别带入。
希望能给你帮助。