已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1
(1)求f(x)(2)求在区间[-1,1]上,函数f(x)的图像恒在直线y=2x+m的上方,求实数m的取值范围。谢谢各位了~~...
(1)求f(x)
(2) 求在区间[-1,1]上,函数f(x)的图像恒在直线y=2x+m的上方,求实数m的取值范围。
谢谢各位了~~ 展开
(2) 求在区间[-1,1]上,函数f(x)的图像恒在直线y=2x+m的上方,求实数m的取值范围。
谢谢各位了~~ 展开
7个回答
展开全部
(1)由f(0)=1有f(1)-f(0)=0==>f(1)=f(0)=1
设f(x)=ax^2+bx+c
由f(0)=1有c=1
由f(1)=1有a+b+1=1==>a+b=0
f(x)=ax^2-ax+1
f(x+1)=a(x+1)^2-a(x+1)+1
f(x+1)-f(x)=a(2x+1)-a=2x==>a=1
则f(x)=x^2-x+1
(2)要使得直线在f(x)下方,则对于-1≤x≤1满足x^2-x+1>2x+m
m<x^2-3x+1=(x-3/2)^2+1-9/4=(x-3/2)^2-5/4
当-1≤x≤1时y=(x-3/2)^2-5/4递减
x=1时最小值为1/4-5/4=-1
则m<-1
设f(x)=ax^2+bx+c
由f(0)=1有c=1
由f(1)=1有a+b+1=1==>a+b=0
f(x)=ax^2-ax+1
f(x+1)=a(x+1)^2-a(x+1)+1
f(x+1)-f(x)=a(2x+1)-a=2x==>a=1
则f(x)=x^2-x+1
(2)要使得直线在f(x)下方,则对于-1≤x≤1满足x^2-x+1>2x+m
m<x^2-3x+1=(x-3/2)^2+1-9/4=(x-3/2)^2-5/4
当-1≤x≤1时y=(x-3/2)^2-5/4递减
x=1时最小值为1/4-5/4=-1
则m<-1
TableDI
2024-07-18 广告
2024-07-18 广告
Excel一键自动匹配,在线免费vlookup工具,3步完成!Excel在线免费vlookup工具,点击90步自动完成vlookup匹配,无需手写公式,免费使用!...
点击进入详情页
本回答由TableDI提供
展开全部
设f(x)=ax²+bx+c
f(0)=1得c=1
f(x+1)-f(x)=2x
即a[(x+1)²-x²]+b[(x+1)-x]=2x
2ax+a+b=2x
所以a=1
b=-1
所以f(x)=x²-x+1
(2)
考虑到函数图像开口向上
联立y=x²-x+1
y=2x+m
得x²-3x+1=m,x∈[-1,1],即-1≤m≤5时两函数有交点
所以m<-1或m>5
f(0)=1得c=1
f(x+1)-f(x)=2x
即a[(x+1)²-x²]+b[(x+1)-x]=2x
2ax+a+b=2x
所以a=1
b=-1
所以f(x)=x²-x+1
(2)
考虑到函数图像开口向上
联立y=x²-x+1
y=2x+m
得x²-3x+1=m,x∈[-1,1],即-1≤m≤5时两函数有交点
所以m<-1或m>5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
(1)令f(x)=ax²+bx+c
f(x+1)-f(x)
=a(x+1)²+b(x+1)+c-ax²-bx-c
=2ax+a+b
即2ax+a+b=2x
所以2a=2 ,b+a=0即a=1,b=-1
f(0)=c=1
所以f(x)=x²-x+1=(x-1/2)²+3/4
(2)在区间【-1,1】上值域[3/4,3]
y=f(x)的图像恒在y=2x+m上方
则x²-x+1>2x+m即x²-3x+1-m>0恒成立
△=9-4(1-m)<0
解得m<-5/4(2)
(1)令f(x)=ax²+bx+c
f(x+1)-f(x)
=a(x+1)²+b(x+1)+c-ax²-bx-c
=2ax+a+b
即2ax+a+b=2x
所以2a=2 ,b+a=0即a=1,b=-1
f(0)=c=1
所以f(x)=x²-x+1=(x-1/2)²+3/4
(2)在区间【-1,1】上值域[3/4,3]
y=f(x)的图像恒在y=2x+m上方
则x²-x+1>2x+m即x²-3x+1-m>0恒成立
△=9-4(1-m)<0
解得m<-5/4(2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)令f(x)=ax2+bx+c(a≠0)代入f(x+1)-f(x)=2x,
得:a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,2ax+a+b=2x,
∴f(x)=x2-x+1;
(2)当x∈[-1,1]时,f(x)>2x+m恒成立即:x2-3x+1>m恒成立;
令 ,
x∈[-1,1]则对称轴: ,
则g(x)min=g(1)=-1
∴m≤-1;
得:a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,2ax+a+b=2x,
∴f(x)=x2-x+1;
(2)当x∈[-1,1]时,f(x)>2x+m恒成立即:x2-3x+1>m恒成立;
令 ,
x∈[-1,1]则对称轴: ,
则g(x)min=g(1)=-1
∴m≤-1;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)设f(x)=ax^2+bx+c,则f(x+1)-f(x)=2ax+a+b=2x
=> a=1;b=-1
又 f(0)=c=1 =>c=1
=> f(x)=x^2-x+1
(2)由于f(x)图像恒在直线y=2x+m的上方,则
f(x)=y=2x+m => x^2-3x+(1-m)=0
根判别式 Δ<0 => m<-5/4
=> a=1;b=-1
又 f(0)=c=1 =>c=1
=> f(x)=x^2-x+1
(2)由于f(x)图像恒在直线y=2x+m的上方,则
f(x)=y=2x+m => x^2-3x+(1-m)=0
根判别式 Δ<0 => m<-5/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询