已知函数f[x]=x²减[2a+1]x+alnx 当a=1时函数f[x]的单调增区间 求函数f[x]在区间[1,e]上的最小值

我不是他舅
2011-10-02 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:34.4亿
展开全部
f'(x)=2x-2a-1+a/x
a=1
递增则f'(x)=2x-3+1/x>0
定义域是x>0
两边乘x
2x²-3x+1=(2x-1)(x-1)>0
所以增区间(0,1/2),(1,+∞)

f'(x)=2x-2a-1+a/x=0
2x²-(2a+1)x+a=0
(2x-1)(x-a)=0
x=1/2,x=a
a<=1/2,则x>1/2,f'(x)>0,递增,最小f(1)
1/2<a<=1,则x>a,f'(x)>0,递增,最小f(1)
1<a<e,此时1/2<x<a时,f'(x)<0,x>a,f'(x)>0,则最小是f(a)
a>=1,则1/2<x<a,f'(x)<0,递减,最小是f(e)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式