1个回答
展开全部
证明:
过D点作DM⊥AC于M,过B点作BN⊥AC于N,
∴DM//BN【∵垂直同一直线】
∵⊿ADE和⊿ABE是同底(AE)的三角形,面积比等于高的比
即S⊿ADE∶S⊿ABE=DM∶BN,S⊿ADE∶S⊿ABE=4∶(4+2)=2∶3
∴DM∶BN=2∶3
∵DM//BE
∴DM∶BN=AD∶AB
∴AD∶AB=2∶3
⊿ABC和⊿BCE是同高(BN)三角形,面积比等于底边的比
即S⊿ABC∶S⊿BCE=AC∶EC,S⊿ABC∶S⊿BCE=(4+2+3)∶3=3∶1
∴AC∶EC=3∶1
那么AE∶AC=(3-1)∶3=2∶3
∴AD∶AD=AE∶AC
∴DE//BC
过D点作DM⊥AC于M,过B点作BN⊥AC于N,
∴DM//BN【∵垂直同一直线】
∵⊿ADE和⊿ABE是同底(AE)的三角形,面积比等于高的比
即S⊿ADE∶S⊿ABE=DM∶BN,S⊿ADE∶S⊿ABE=4∶(4+2)=2∶3
∴DM∶BN=2∶3
∵DM//BE
∴DM∶BN=AD∶AB
∴AD∶AB=2∶3
⊿ABC和⊿BCE是同高(BN)三角形,面积比等于底边的比
即S⊿ABC∶S⊿BCE=AC∶EC,S⊿ABC∶S⊿BCE=(4+2+3)∶3=3∶1
∴AC∶EC=3∶1
那么AE∶AC=(3-1)∶3=2∶3
∴AD∶AD=AE∶AC
∴DE//BC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询