求下列微分方程的通解或特解: (1) 3y''-2y'-8y=0 (2) 4y"-8y'+5y=0

(3)y"+4y'+29y=0,y|(下角x=0)=0,y'|(下角x=0)=15(4)2y"+5y'=5x^2-2x-1... (3) y"+4y'+29y=0, y|(下角x=0)=0, y'|(下角x=0)=15
(4) 2y"+5y'=5x^2-2x-1
展开
heanmen
2011-10-05 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4283
采纳率:100%
帮助的人:2586万
展开全部
解:(1)∵3y''-2y'-8y=0的特征方程是3r²-2r-8=0,则r1=2,r2=-4/3
∴3y''-2y'-8y=0的通解是y=C1e^(2x)+C2e^(-4x/3) (C1,C2是积分常数);
(2)∵4y"-8y'+5y=0的特征方程是4r²-8r+5=0,则r1=1+i/2,r2=1-i/2(i是虚数)
∴4y"-8y'+5y=0的通解是y=(C1cos(x/2)+C2sin(x/2))e^x (C1,C2是积分常数);
(3)∵y"+4y'+29y=0的特征方程是r²+4r+29=0,则r1=-2+5i,r2=-2-5i
∴y"+4y'+29y=0的通解是y=(C1cos(5x)+C2sin(5x))e^(-2x)
∵ y|(下角x=0)=0, y'|(下角x=0)=15
∴C1=0,C2=3
故满足初始条件的解是3sin(5x)e^(-2x);
(4)∵2y"+5y'=0的特征方程是2r²+5r=0,则r1=-5/2,r2=0
∴2y"+5y'=0的通解是y=C1e^(-5x/2)+C2 (C1,C2是积分常数)
设原方程的解是y=Ax³+Bx²+Cx
代入原方程得A=1/3,B=-6/5,C=7/5
故原方程的通解是y=C1e^(-5x/2)+C2=x³/3-6x²/5+7x/5 (C1,C2是积分常数)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式