如图,直线l经过点A(1,0),且与双曲线y=m/x(x>0)交于点B(2,1),过点P(p,p-1)(p>1)

匿名用户
2011-10-07
展开全部
1、设l直线方程为y=ax+b,当x=1时,y=0,a+b=0,a=-b,(1)
当x=2时,y=1,1=2a+b,(2),
b=-1,a=1,
故直线方程为:y=x-1.
双曲线y=m/x经过B点,B(2,1)坐标代入,1=m/2,m=2,
双曲线方程为:y=2/x,(x>0).
m=2.
2、点P在直线y=2上,则p-1=2,p=3,
P(3,2),
PN//X轴,PN直线方程为:y=2,
y=2与双曲线y=2/x相交于M(1,2)点
y=2与双曲线y=-2/x相交于N(-1,2)点,
|PN|=3-(-1)=4,
|PM|=3-1=2,
根据两点距离公式,|PB|=√[(3-2)^2+(2-1)^2]=√2,
|PA|=√[(3-1)^2+(2-0)^2]=2√2,
|PM|/|PN|=2/4=1/2,
|PB|/|PA|=√2/(2√2)=1/2,
〈MPB=〈NPA,
∴△PMB∽△PNA。
1104856794
2012-04-08 · 贡献了超过101个回答
知道答主
回答量:101
采纳率:0%
帮助的人:27万
展开全部
按初中方法作。
1、设l直线方程为y=ax+b,当x=1时,y=0,a+b=0,a=-b,(1)
当x=2时,y=1,1=2a+b,(2),
b=-1,a=1,
故直线方程为:y=x-1.
双曲线y=m/x经过B点,B(2,1)坐标代入,1=m/2,m=2,
双曲线方程为:y=2/x,(x>0).
m=2.
2、点P在直线y=2上,则p-1=2,p=3,
P(3,2),
PN//X轴,PN直线方程为:y=2,
y=2与双曲线y=2/x相交于M(1,2)点
y=2与双曲线y=-2/x相交于N(-1,2)点,
|PN|=3-(-1)=4,
|PM|=3-1=2,
根据两点距离公式,|PB|=√[(3-2)^2+(2-1)^2]=√2,
|PA|=√[(3-1)^2+(2-0)^2]=2√2,
|PM|/|PN|=2/4=1/2,
|PB|/|PA|=√2/(2√2)=1/2,
〈MPB=〈NPA,
∴△PMB∽△PNA。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
塞一的I
2011-10-07
知道答主
回答量:8
采纳率:0%
帮助的人:1.3万
展开全部
1、设l直线方程为y=ax+b,当x=1时,y=0,a+b=0,a=-b,(1)
当x=2时,y=1,1=2a+b,(2),
b=-1,a=1,
故直线方程为:y=x-1.
双曲线y=m/x经过B点,B(2,1)坐标代入,1=m/2,m=2,
双曲线方程为:y=2/x,(x>0).
m=2.
2、点P在直线y=2上,则p-1=2,p=3,
P(3,2),
PN//X轴,PN直线方程为:y=2,
y=2与双曲线y=2/x相交于M(1,2)点
y=2与双曲线y=-2/x相交于N(-1,2)点,
|PN|=3-(-1)=4,
|PM|=3-1=2,
根据两点距离公式,|PB|=√[(3-2)^2+(2-1)^2]=√2,
|PA|=√[(3-1)^2+(2-0)^2]=2√2,
|PM|/|PN|=2/4=1/2,
|PB|/|PA|=√2/(2√2)=1/2,
〈MPB=〈NPA,
∴△PMB∽△PNA////
应该就是这样、
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式