用定义证明函数f(x)=x+x分之1在x∈[1,+∞)上是增函数
展开全部
设1≤x1<x2
f(x1)-f(x2)
=(x1 +1/x1)-(x2 +1/x2)
=(x1-x2)+(1/x1-1/x2)
=(x1-x2)+(x2-x1)/(x1x2)
=(x1-x2)-(x1-x2)/(x1x2)
=(x1-x2)[1 -1/(x1x2)]
=(x1-x2)(x1x2-1)/(x1x2)
因1≤x1<x2
故有x1-x2<0,x1x2-1>0,x1x2>0
所以(x1-x2)(x1x2-1)/(x1x2)<0
即f(x1)<f(x2)
所以f(x)在x∈[1,+∞)上是增函数
f(x1)-f(x2)
=(x1 +1/x1)-(x2 +1/x2)
=(x1-x2)+(1/x1-1/x2)
=(x1-x2)+(x2-x1)/(x1x2)
=(x1-x2)-(x1-x2)/(x1x2)
=(x1-x2)[1 -1/(x1x2)]
=(x1-x2)(x1x2-1)/(x1x2)
因1≤x1<x2
故有x1-x2<0,x1x2-1>0,x1x2>0
所以(x1-x2)(x1x2-1)/(x1x2)<0
即f(x1)<f(x2)
所以f(x)在x∈[1,+∞)上是增函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询