已知关于x的方程x的平方+(m+2)+2m-1=0.求证方程有两个不相等的实数根
4个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
解答:由根的判别式Δ=﹙m+2﹚²-4﹙2m-1﹚
=m²-4m+4+4
=﹙m-2﹚²+4,
∵﹙m-2﹚≥0,
∴Δ>0,
∴方程有两个不相等的实数根。
=m²-4m+4+4
=﹙m-2﹚²+4,
∵﹙m-2﹚≥0,
∴Δ>0,
∴方程有两个不相等的实数根。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Δ=﹙m+2﹚²-4﹙2m-1﹚
解 =m²-4m+4+4
=﹙m-2﹚²+4,
∵﹙m-2﹚≥0,
∴Δ>0,
∴方程有两个不相等的实数根。
解 =m²-4m+4+4
=﹙m-2﹚²+4,
∵﹙m-2﹚≥0,
∴Δ>0,
∴方程有两个不相等的实数根。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
题目中有误,方程应为:x^2+(m+2)x+2m-1=0
要证明方程有两个不相等的实数根,则要不△大于0
△=b^2-4ac=(m+2)^2-4(2m-1)=(m-2)^2+4 当m为实数时,△值大于等于4.因此方程有两个不相等的实数根.
题目中有误,方程应为:x^2+(m+2)x+2m-1=0
要证明方程有两个不相等的实数根,则要不△大于0
△=b^2-4ac=(m+2)^2-4(2m-1)=(m-2)^2+4 当m为实数时,△值大于等于4.因此方程有两个不相等的实数根.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询