等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1 ,则an/bn= 求详细过程
2个回答
展开全部
S(2n-1)=(A1+A(2n-1))×(2n-1)/2
=(A1+A1+(2n-2)d)×(2n-1)/2
=(A1+(n-1)d)×(2n-1)
=An×(2n-1)
同理
T(2n-1)=Bn×(2n-1)
[An×(2n-1)]/[Bn×(2n-1)]
=S(2n-1)/T(2n-1)
=2(2n-1)/[3(2n-1)+1]
=(4n-2)/(6n-3+1)
=(2n-1)/(3n-1)
An/Bn=(2n-1)/(3n-1)
=(A1+A1+(2n-2)d)×(2n-1)/2
=(A1+(n-1)d)×(2n-1)
=An×(2n-1)
同理
T(2n-1)=Bn×(2n-1)
[An×(2n-1)]/[Bn×(2n-1)]
=S(2n-1)/T(2n-1)
=2(2n-1)/[3(2n-1)+1]
=(4n-2)/(6n-3+1)
=(2n-1)/(3n-1)
An/Bn=(2n-1)/(3n-1)
参考资料: http://zhidao.baidu.com/question/110317402.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询