如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点

,求证:(1)。△ACE≌△BCD,(2),AD²+AE²=DE²... ,求证:(1)。△ACE≌△BCD,(2),AD²+AE²=DE² 展开
帽子爱洪辰1
2011-10-07 · TA获得超过1707个赞
知道答主
回答量:1
采纳率:0%
帮助的人:2.9万
展开全部
证明:(1)∵∠ACB=∠ECD,
∴∠ACD+∠BCD=∠ACD+∠ACE,
即∠BCD=∠ACE.
∵BC=AC,DC=EC,
∴△ACE≌△BCD.

(2)∵△ACB是等腰直角三角形,
∴∠B=∠BAC=45度.
∵△ACE≌△BCD,
∴∠B=∠CAE=45°
∴∠DAE=∠CAE+∠BAC=45°+45°=90°,
∴AD2+AE2=DE2.
由(1)知AE=DB,
∴AD2+DB2=DE2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式