
2个回答
展开全部
证明:
作DM⊥AB于M,DN⊥AC于N
∴DM=DN【根据角分线定理:角平分线上的点到两边的距离相等】
∵∠EDF+∠BAF=180º
∴∠AED+∠AFD=180º
∴∠CFD=180º-AFD=∠AED
又∵∠EMD=∠FND=90º,DM=DN
∴⊿EMD≌⊿FND(AAS)
∴DE=DF
作DM⊥AB于M,DN⊥AC于N
∴DM=DN【根据角分线定理:角平分线上的点到两边的距离相等】
∵∠EDF+∠BAF=180º
∴∠AED+∠AFD=180º
∴∠CFD=180º-AFD=∠AED
又∵∠EMD=∠FND=90º,DM=DN
∴⊿EMD≌⊿FND(AAS)
∴DE=DF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询