关于线性代数的问题f(x)=x1x2+x1x3+x1x4+x2x3+x2x4+x3x4用配方法化为标准型 老师麻烦了
1个回答
展开全部
令 x1=y1+y2, x2=y1-y2, 则
f = (y1+y2)(y1-y2)+(y1+y2)y3+(y1+y2)y4+(y1-y2)y3+(y1-y2)y4+y3y4
= y1^2-y2^2+2y1y3+2y1y4+y3y4
= (y1+y3+y4)^2-y2^2-y3^2-y4^2-y3y4
= (y1+y3+y4)^2-y2^2-(y3+(1/2)y4)^2-(3/4)y4^2
= z1^2-z2^2-z3^2-(3/4)z4^2.
f = (y1+y2)(y1-y2)+(y1+y2)y3+(y1+y2)y4+(y1-y2)y3+(y1-y2)y4+y3y4
= y1^2-y2^2+2y1y3+2y1y4+y3y4
= (y1+y3+y4)^2-y2^2-y3^2-y4^2-y3y4
= (y1+y3+y4)^2-y2^2-(y3+(1/2)y4)^2-(3/4)y4^2
= z1^2-z2^2-z3^2-(3/4)z4^2.
来自:求助得到的回答
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询