证明用第一型曲面积分证明球面的表面积公式具体过程?谢谢,急!
2个回答
展开全部
球截面圆的周长函数为2(pi)√(R^2-x^2)
对x进行[0,R]积分得到半球表面积
即dS=4(pi)√(R^2-x^2)
对dS积分,设x=R(sin t),t=[0,pi/2]
则dS=4(pi)R(cos t)√(R^2-(R(sin t))^2) dt
=4(pi)(R^2)(cos t)^2 dt
=2(pi)(R^2)+(2(pi)(R^2)(sin 2t) dt) ,t=[0,pi/2]
则解2(pi)(R^2)(sin 2t) dt积分有2(pi)(R^2)
即得S=4(pi)(R^2)
对x进行[0,R]积分得到半球表面积
即dS=4(pi)√(R^2-x^2)
对dS积分,设x=R(sin t),t=[0,pi/2]
则dS=4(pi)R(cos t)√(R^2-(R(sin t))^2) dt
=4(pi)(R^2)(cos t)^2 dt
=2(pi)(R^2)+(2(pi)(R^2)(sin 2t) dt) ,t=[0,pi/2]
则解2(pi)(R^2)(sin 2t) dt积分有2(pi)(R^2)
即得S=4(pi)(R^2)
追问
算了好久就是没算出来你的结果
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询