高数微积分极限一章:lim(sin√x-sin√(x+1)) x趋向于无穷,求证其极限为0 给出详细过程
4个回答
展开全部
sin√x-sin√(x+1)=2cos{1/2[√x+√(x+1)]}sin{1/2(√x-√(x+1))}
当x趋向于无穷时候(√x-√(x+1)的极限为0,具体做法是乘他的共轭根式恒等变形为1/([√x+√(x+1)]。根据无穷小量与有界函数的乘积仍为无穷小量可以得lim(sin√x-sin√(x+1))=0
当x趋向于无穷时候(√x-√(x+1)的极限为0,具体做法是乘他的共轭根式恒等变形为1/([√x+√(x+1)]。根据无穷小量与有界函数的乘积仍为无穷小量可以得lim(sin√x-sin√(x+1))=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(x→∞)(sin√x-sin√(x+1))
=lim(x→∞)2cos[(√x+√(x+1)) /2]sin[(√x-√(x+1)) /2]
由于x→∞时,cos[(√x+√(x+1)) /2]是有界函数,而sin[(√x-√(x+1)) /2→0,故
=lim(x→∞)2cos[(√x+√(x+1)) /2]sin[(√x-√(x+1)) /2]
=0
=lim(x→∞)2cos[(√x+√(x+1)) /2]sin[(√x-√(x+1)) /2]
由于x→∞时,cos[(√x+√(x+1)) /2]是有界函数,而sin[(√x-√(x+1)) /2→0,故
=lim(x→∞)2cos[(√x+√(x+1)) /2]sin[(√x-√(x+1)) /2]
=0
追问
lim(x→∞)(sin√x-sin√(x+1))
=lim(x→∞)2cos[(√x+√(x+1)) /2]sin[(√x-√(x+1)) /2]
这一步怎么转换得来,请详细解说,有点转不过来
追答
这个是三角函数和差化积公式
请参考
http://tieba.baidu.com/p/1228926006
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由三角函数和差化积公式
原式=lim{x->∞}2sin(√x-√x+1)/2*cos(√x+√x+1)/2=lim{x->∞}2sin[-1/2(√x+√x+1)]*cos(√x+√x+1)/2=0
最后一个等式是因为无穷小sin[-1/2(√x+√x+1)]与有界函数cos(√x+√x+1)/2的乘积仍然是无穷小, 即极限为0
原式=lim{x->∞}2sin(√x-√x+1)/2*cos(√x+√x+1)/2=lim{x->∞}2sin[-1/2(√x+√x+1)]*cos(√x+√x+1)/2=0
最后一个等式是因为无穷小sin[-1/2(√x+√x+1)]与有界函数cos(√x+√x+1)/2的乘积仍然是无穷小, 即极限为0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高中怎么会没学这个?没有和差化积这种基本的公式是无法作的
追问
你以为全国每个地区都学一样的东西呀,考试大纲都不一样
追答
我只能说,没有和差化积,真没法做这个。而且三角函数及其公式,不学真得很奇怪。虽然我同意各地 大纲不一样,不过这些公式也太重要了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询