一个数列的求和公式是等差数列的求和公式,如何证明这是等差数列,(所证明的数列是无穷数列)

即一个数列的求和公式为Sn=[n(A1+An)]/2,如何证明它是等差数列啊... 即一个数列的求和公式为Sn=[n(A1+An)]/2,如何证明它是等差数列啊 展开
xiaoy2007
2011-10-09 · TA获得超过3311个赞
知道大有可为答主
回答量:1462
采纳率:0%
帮助的人:1255万
展开全部
an=Sn-S(n-1)=(1/2)a1+(n/2)an-((n-1)/2)a(n-1)
化简后得
(2-n)an+(n-1)a(n-1)=a1 (1)
n→n+1
(2-n-1)a(n+1)+nan=a1 (2)
(1)-(2)得
-(1-n)a(n+1)+(2-2n)an+(n-1)a(n-1)=0
即(n-1)(a(n+1)+a(n-1)-2an)=0
n-1>0 (a(n-1)的下标至少是1)
∴a(n+1)+a(n-1)=2an
即a(n+1)-an=an-a(n-1)
∴是等差数列
120426140
2011-10-09
知道答主
回答量:3
采纳率:0%
帮助的人:5052
展开全部
列举法,就是把n,A1,An换成数举例
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hclsjy
2011-10-09
知道答主
回答量:26
采纳率:0%
帮助的人:17.5万
展开全部
利用 an=s(n)-s( n-1) a(n)- a(n-1) =d
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友2f9729f
推荐于2016-12-01 · TA获得超过1481个赞
知道小有建树答主
回答量:381
采纳率:0%
帮助的人:150万
展开全部
2Sn=na1+nan
2Sn-1=(n-1)a1+(n-1)an-1
相减有(n-2)an=(n-1)an-1-a1
变形为(n-2)(an-a1)=(n-1)(an-1-a1)
(an-a1)/(an-1-a1)=(n-1)/(n-2)
则有(an-1-a1)/(an-2-a1)=(n-2)/(n-3)
(an-2-a1)/(an-3-a1)=(n-3)/(n-4)
.............
(a4-a1)/(a3-a1)=3/2
(a3-a1)/(a2-a1)=2/1
所有等式相乘有(an-a1) /(a2-a1)=n-1 (中间项分母与后一项分子约去)
an-a1=(n-1))(a2-a1)
所以an-1-a1=(n-2)(a2-a1)
相减有an-an-1=a2-a1
任意两相邻项的差为a2-a1,而a2-a1为某一常数,所以{an}为等差数列
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式