已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.若∠AOC=30°.求∠DOE的度数;(2)
已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.若∠AOC=30°.求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(...
已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1.若∠AOC=30°.求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置,探究∠AOC和∠DOE的度数之间的关系.写出你的结论,并说明理由.
展开
1个回答
展开全部
(1)∵∠COD是直角,∠AOC=30°,
∴∠BOD=180°-90°-30°=60°,
∴∠COB=90°+60°=150°,
∵OE平分∠BOC,
∴∠BOE=
∠BOC=75°,
∴∠DOE=∠BOE-∠BOD=75°-60°=15°.
(2)∵∠COD是直角,∠AOC=α,
∴∠BOD=180°-90°-α=90°-α,
∴∠COB=90°+90°-α=180°-α,
∵OE平分∠BOC,
∴∠BOE=
∠BOC=90°-
α,
∴∠DOE=∠BOE-∠BOD=90°-
α-(90°-α)=
α.
(3)∠AOC=2∠DOE,
理由是:∵∠BOC=180°-∠AOC,OE平分∠BOC,
∴∠BOE=
∠BOC=90°-
∠AOC,
∵∠COD=90°,
∴∠BOD=90°-∠BOC=90°-(180°-∠AOC)=∠AOC-90°,
∴∠DOE=∠BOD+∠BOE=(∠AOC-90°)+(90°-
∠AOC)=
∠AOC,
即∠AOC=2∠DOE.
∴∠BOD=180°-90°-30°=60°,
∴∠COB=90°+60°=150°,
∵OE平分∠BOC,
∴∠BOE=
1 |
2 |
∴∠DOE=∠BOE-∠BOD=75°-60°=15°.
(2)∵∠COD是直角,∠AOC=α,
∴∠BOD=180°-90°-α=90°-α,
∴∠COB=90°+90°-α=180°-α,
∵OE平分∠BOC,
∴∠BOE=
1 |
2 |
1 |
2 |
∴∠DOE=∠BOE-∠BOD=90°-
1 |
2 |
1 |
2 |
(3)∠AOC=2∠DOE,
理由是:∵∠BOC=180°-∠AOC,OE平分∠BOC,
∴∠BOE=
1 |
2 |
1 |
2 |
∵∠COD=90°,
∴∠BOD=90°-∠BOC=90°-(180°-∠AOC)=∠AOC-90°,
∴∠DOE=∠BOD+∠BOE=(∠AOC-90°)+(90°-
1 |
2 |
1 |
2 |
即∠AOC=2∠DOE.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询