已知函数f(x)= √3sinωxcosωx-cos^2ωx+1/2(ω>0,x∈R)的最小正周期为π/2

已知函数f(x)=√3sinωxcosωx-cos^2ωx+1/2(ω>0,x∈R)的最小正周期为π/21、求f(2π/3)的值,并求出函数f(x)的图像的对称中心的坐标... 已知函数f(x)= √3sinωxcosωx-cos^2ωx+1/2(ω>0,x∈R)的最小正周期为π/2
1、求f(2π/3)的值,并求出函数f(x)的图像的对称中心的坐标
2、当x∈[π/3, π/2]时,求函数f(x)的单调递增区间
注:π=pi
展开
pll0508
2011-10-11 · TA获得超过1113个赞
知道小有建树答主
回答量:393
采纳率:0%
帮助的人:239万
展开全部
f(x)= √3sinωxcosωx-cos^2ωx+1/2
=√3/2*(2sinwxcoswx)-cos^2wx+1/2
=√3/2sin2wx-cos^2wx+1/2
=√3/2sin2wx-[(1+cos2wx)/2]+1/2
=√3/2sin2wx-1/2cos2wx
=-cos(π/3+2wx)
因为最小正周期为π/2,所以T=2π/2w=π/2,w=2
f(x)=-cos(π/3+4x)
x=2π/3时,f(x)=1,由正余弦图像知,其中心对称坐标即为其与X轴的交点,所以f(x)的中间对称坐标为:(π/24+kπ/2,0),

(2)f(x)=-cos(π/3+4x),其单调增区间为-π+2kπ≤π/3+4x≤0,即-π/3+1/2kπ ≤ x ≤ -π/12+1/2kπ即[-π/3+1/2kπ, -π/12+1/2kπ]
同理,其单调减区间为:-π/12+1/2kπ ≤ x ≤ π/6+1/2kπ即[-π/12+1/2kπ, π/6+1/2kπ ]
所以x∈[π/3, π/2]时,
x∈[π/3, 5π/12]为增函数,在x∈[5π/12, π/2]为减函数。

上面所以的K为整数。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式