证明函数y=x+x/1在区间(0,1]上是减函数,,求解

林开炜
2011-10-13 · TA获得超过4192个赞
知道小有建树答主
回答量:541
采纳率:0%
帮助的人:716万
展开全部
设x1,x2∈(0,1],且x1<x2
则f(x1)-f(x2)=x1+1/x1-x2-1/x2
=(x1-x2)+(x2-x1)/x1x2
=(x1-x2)+[(x2-x1)]/x1x2
=(x1-x2)[1-1/x1x2]
=(x1-x2)[(x1x2-1)/(x1x2)]
x1-x2<0,x1x2>0,
x1,x2∈(0,1],则x1x2<1
∴(x1-x2)[(x1x2-1)/(x1x2)]>0.
所以f(x1)>f(x2)
所以f(x)在(0,1]上是减函数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式