已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的
已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的...
已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.
展开
1个回答
展开全部
∵f(x)=ex-ax2-bx-1,∴g(x)=f′(x)=ex-2ax-b,
又g′(x)=ex-2a,x∈[0,1],∴1≤ex≤e,
∴①当a≤
时,则2a≤1,g′(x)=ex-2a≥0,
∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1-b;
②当
<a<
,则1<2a<e,
∴当0<x<ln(2a)时,g′(x)=ex-2a<0,当ln(2a)<x<1时,g′(x)=ex-2a>0,
∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,
g(x)min=g[ln(2a)]=2a-2aln(2a)-b;
③当a≥
时,则2a≥e,g′(x)=ex-2a≤0,
∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e-2a-b,
综上:函数g(x)在区间[0,1]上的最小值为gmin(x)=
;
(2)由f(1)=0,?e-a-b-1=0?b=e-a-1,又f(0)=0,
若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,
由(1)知当a≤
或a≥
时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.
若
<a<
,则gmin(x)=2a-2aln(2a)-b=3a-2aln(2a)-e+1
令h(x)=
x?xlnx?e+1 (1<x<e)
则h′(x)=
?(lnx+x?
)=
?lnx,∴h′(x)=
?lnx.由h′(x)=
?lnx>0?x<
又g′(x)=ex-2a,x∈[0,1],∴1≤ex≤e,
∴①当a≤
1 |
2 |
∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1-b;
②当
1 |
2 |
e |
2 |
∴当0<x<ln(2a)时,g′(x)=ex-2a<0,当ln(2a)<x<1时,g′(x)=ex-2a>0,
∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,
g(x)min=g[ln(2a)]=2a-2aln(2a)-b;
③当a≥
e |
2 |
∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e-2a-b,
综上:函数g(x)在区间[0,1]上的最小值为gmin(x)=
|
(2)由f(1)=0,?e-a-b-1=0?b=e-a-1,又f(0)=0,
若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,
由(1)知当a≤
1 |
2 |
e |
2 |
若
1 |
2 |
e |
2 |
令h(x)=
3 |
2 |
则h′(x)=
3 |
2 |
1 |
x |
1 |
2 |
1 |
2 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|