某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:已知△ABC如图1,分别
某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:已知△ABC如图1,分别以AB和AC为边向△ABC外侧作等边△ABD和等边△ACE,连接BE...
某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:已知△ABC如图1,分别以AB和AC为边向△ABC外侧作等边△ABD和等边△ACE,连接BE、CD,请你完成作图并证明BE=CD.(要求:尺规作图,不写作法但保留作图痕迹)●类比探究:如图2,分别以AB和AC为边向△ABC外侧作正方形ABDE和正方形ACFG,连接CE、BG,则线段CE、BG有什么数量关系?说明理由.●灵活运用:如图3,已知△ABC中,AB=22,BC=3,∠ABC=45°,过点A作EA⊥AC,垂足为A,且满足AC=AE,求BE的长.
展开
1个回答
展开全部
(1)作图,如图所示:
∵△ABD和△ACE都为等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠CAB,即∠DAC=∠EAB,
在△ACD和△AEB中,
,
∴△ACD≌△AEB(SAS),
∴BE=CD;
(2)CE=BG,理由为:
证明:∵四边形ABDE与四边形ACFG都为正方形,
∴AE=AB,AC=AG,∠EAB=∠CAG=90°,
∴∠EAB+∠BAC=∠CAG+∠CAB,即∠EAC=∠BAG,
在△ACE和△ABG中,
,
∴△ACE≌△ABG(SAS),
∴CE=BG;
(3)以AB为边向外作等腰直角三角形ABG,连接CG,
证明:在等腰Rt△ABG中,AB=AC=2
,
根据勾股定理得:BG=
=
=4,
∵∠CBA=∠ABC=45°,
∴∠GBC=90°,
∴△CBG为直角三角形,
根据勾股定理得:CG=
∵△ABD和△ACE都为等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠CAB,即∠DAC=∠EAB,
在△ACD和△AEB中,
|
∴△ACD≌△AEB(SAS),
∴BE=CD;
(2)CE=BG,理由为:
证明:∵四边形ABDE与四边形ACFG都为正方形,
∴AE=AB,AC=AG,∠EAB=∠CAG=90°,
∴∠EAB+∠BAC=∠CAG+∠CAB,即∠EAC=∠BAG,
在△ACE和△ABG中,
|
∴△ACE≌△ABG(SAS),
∴CE=BG;
(3)以AB为边向外作等腰直角三角形ABG,连接CG,
证明:在等腰Rt△ABG中,AB=AC=2
2 |
根据勾股定理得:BG=
AB2+AG2 |
8+8 |
∵∠CBA=∠ABC=45°,
∴∠GBC=90°,
∴△CBG为直角三角形,
根据勾股定理得:CG=
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|