某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:已知△ABC如图1,分别

某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:已知△ABC如图1,分别以AB和AC为边向△ABC外侧作等边△ABD和等边△ACE,连接BE... 某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:已知△ABC如图1,分别以AB和AC为边向△ABC外侧作等边△ABD和等边△ACE,连接BE、CD,请你完成作图并证明BE=CD.(要求:尺规作图,不写作法但保留作图痕迹)●类比探究:如图2,分别以AB和AC为边向△ABC外侧作正方形ABDE和正方形ACFG,连接CE、BG,则线段CE、BG有什么数量关系?说明理由.●灵活运用:如图3,已知△ABC中,AB=22,BC=3,∠ABC=45°,过点A作EA⊥AC,垂足为A,且满足AC=AE,求BE的长. 展开
 我来答
初春宝石
推荐于2016-12-01 · 超过55用户采纳过TA的回答
知道答主
回答量:119
采纳率:0%
帮助的人:105万
展开全部
(1)作图,如图所示:

∵△ABD和△ACE都为等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠CAB,即∠DAC=∠EAB,
在△ACD和△AEB中,
AD=AB
∠DAC=∠EAB
AC=AE

∴△ACD≌△AEB(SAS),
∴BE=CD;
(2)CE=BG,理由为:
证明:∵四边形ABDE与四边形ACFG都为正方形,
∴AE=AB,AC=AG,∠EAB=∠CAG=90°,
∴∠EAB+∠BAC=∠CAG+∠CAB,即∠EAC=∠BAG,
在△ACE和△ABG中,
AE=AB
∠EAC=∠BAG
AC=AG

∴△ACE≌△ABG(SAS),
∴CE=BG;
(3)以AB为边向外作等腰直角三角形ABG,连接CG,

证明:在等腰Rt△ABG中,AB=AC=2
2

根据勾股定理得:BG=
AB2+AG2
=
8+8
=4,
∵∠CBA=∠ABC=45°,
∴∠GBC=90°,
∴△CBG为直角三角形,
根据勾股定理得:CG=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消