有一种“上升数”,这些数的数字从左往右依次增大,将所有的四位“上升数”按从小到大的顺序排成一行:12

有一种“上升数”,这些数的数字从左往右依次增大,将所有的四位“上升数”按从小到大的顺序排成一行:1234,1235,1236,…,6789.请问:此列数中的第100个数是... 有一种“上升数”,这些数的数字从左往右依次增大,将所有的四位“上升数”按从小到大的顺序排成一行:1234,1235,1236,…,6789.请问:此列数中的第100个数是多少? 展开
 我来答
靳志0if
推荐于2017-11-27 · 超过69用户采纳过TA的回答
知道答主
回答量:141
采纳率:90%
帮助的人:56.6万
展开全部
根据上升数的特点可知,
以1开头的四位“上升数”有:
1234 1235 1236 1237 1238 1239 123*=6
1245 1246 1247 1248 1249 124*=5
1256 1257 1258 1259

12**=6+5+4+3+2+1=21
13**5+4+3+2+1=15
1***=21+15+10+6+3+1=56
即有:
C
3
8
=
8×7×6
3×2×1
=56个.
同理可知,
以2开头的“上升数”有“
C
3
7
=
7×6×5
3×2×1
=35个.
以3开头的“上升数”有:
C
2
5
=
5×4×1
2×1
=10个,
因为:56+35+10=101,所以第101个上升数是3489,则第100个是3479.
匿名用户
2021-10-20
展开全部
上升数中不会有0, 可以组成4位数的数码只有1~9. 如果上升数是2位数, 这两个数字是从9个数码取出的2个. 取出后上升排列是唯一方式. 所以9取2后不用考虑排列, 这是组合问题, 所以这样的两位数总个数是C(9,2)=36个.
按这个方法, 4位数一共有C(9,4)=126个. 分类计算一下, “1***”是从(2,3,4,5,6,7,8,9)的8个数中取3个有C(8,3)=56个, “2***”有C(7,3)=35个, “3***”有C(6,3)=20个,“4***”形C(5,3)=10个, “5***”有C(4,1)=4个, “6789”有1个. 其中(3456~3789)是第92~112个. 枚举一下, 3456~3459(有4个)为第92~95个, 3467~3469(有3个)为96~98个, 3478~3479(有2个)为第99~100个.
所以第100个数是3479.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式