全微分与偏导数的关系?
4个回答
展开全部
2、全微分若存在,偏导数必须存在
3、有偏导数存在,全微分不一定存在
连续是偏导数存在的必要不充分条件。偏导数要存在,则函数的左极限等于右极限,左导数等于右导数,也就是说由偏导数存在能够推出函数连续,但是函数连续无法推出偏导数存在。
一元型
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不随Δx改变的常量,但A可以随x改变),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的;
且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
偏导数就是
在一个范围里导数,如在(x0,y0)处导数。
全导数就是
定义域为R的导数,如在实数内都是可导的
在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
函数f关于变量x的偏导数写为或。偏导数符号是圆体字母,区别于全导数符号的正体d。
这个符号是阿德里安-马里·勒让德介入的并在雅可比的重新介入后得到普遍接受。
偏导数z=xy+y
对x求偏导z'=y
对y求偏导z'=x+1
全导数y=x^2
对x求偏导
y'=2x
求偏导时就把其它变量看作常数,字母代号即可,如Z=X^2+Y^2,
对X求偏导,Zx=2X,
对Y求偏导,Zy=2Y,
全导时对所有变量分别求导,如对Z求全导dZ=2Xdx+2Ydy
在一个范围里导数,如在(x0,y0)处导数。
全导数就是
定义域为R的导数,如在实数内都是可导的
在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
函数f关于变量x的偏导数写为或。偏导数符号是圆体字母,区别于全导数符号的正体d。
这个符号是阿德里安-马里·勒让德介入的并在雅可比的重新介入后得到普遍接受。
偏导数z=xy+y
对x求偏导z'=y
对y求偏导z'=x+1
全导数y=x^2
对x求偏导
y'=2x
求偏导时就把其它变量看作常数,字母代号即可,如Z=X^2+Y^2,
对X求偏导,Zx=2X,
对Y求偏导,Zy=2Y,
全导时对所有变量分别求导,如对Z求全导dZ=2Xdx+2Ydy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
通过全微分可以求偏导数。
追问
这两个有什么关系么
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询