什么是一阶导数连续
一阶连续导数就是指函数求导之后,在整个定义域上,其一阶导数都是连续的。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
当函数f的自变量在一点x0上产生一个增量h时,函数输出值的增量与自变量增量h的比值在h趋于0时的极限如果存在,即为f在x0处的导数。
设有定义域和取值都在实数域中的函数y=f(x)。若f(x) 在点 的某个邻域内有定义,则当自变量x在x0处取得增量 (点 仍在该邻域内)时,相应地y取得增量 。
如果 与 之比当 时的极限存在,则称函数y=f(x) 在点 处可导,并称这个极限为函数 y=f(x)在点 处的导数,记为 ,即:
对于一般的函数,如果不使用增量的概念,函数f(x)在点x0处的导数也可以定义为:当定义域内的变量x趋近于x0 时,也可记作 或者 的极限。也就是说,
扩展资料:
一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:
(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;
(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;
(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。
如果一个函数的定义域为全体实数,即函数在实数域上都有定义,要使函数f在一点可导,那么函数一定要在这一点处连续。换言之,函数若在某点可导,则必然在该点处连续。
可导的函数一定连续,不连续的函数一定不可导。
参考资料:百度百科——一阶导数
不是吧、、、
广告 您可能关注的内容 |