如图,在Rt△ABC中,∠BAC=90°,AB=AC,点M、N在边BC上, (2)如果M、N是边BC上的两个动点,且满足∠MAN=45
如果M、N是边BC上的两个动点,且满足∠MAN=45,那么线段BM、MN、NC是否有可能使等式MN平方=BM平方+NC平方成立,如果成立,请证明,不成立,说明理由。...
如果M、N是边BC上的两个动点,且满足∠MAN=45,那么线段BM、MN、NC是否有可能使等式MN平方=BM平方+NC平方成立,如果成立,请证明,不成立,说明理由。
展开
3个回答
展开全部
(2)MN2=BM2+NC2成立.
证明:过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.
∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.
∵CE⊥BC,∴∠ACE=∠B=45°.
在△ABM和△ACE中, {AB=AC∠B=∠ACEBM=CE
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.(1分)
在△MAN和△EAN中, {AM=AE∠MAN=∠EANAN=AN
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.
即得MN2=BM2+NC2.
另证:由∠BAC=90°,AB=AC,可知,把△ABM绕点A逆时针旋转90°后,AB与AC重合,设点M的对应点是点E.
于是,由图形旋转的性质,得AM=AE,∠BAM=∠EAN.
抄完了给评个最佳吧!
证明:过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.
∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.
∵CE⊥BC,∴∠ACE=∠B=45°.
在△ABM和△ACE中, {AB=AC∠B=∠ACEBM=CE
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.(1分)
在△MAN和△EAN中, {AM=AE∠MAN=∠EANAN=AN
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.
即得MN2=BM2+NC2.
另证:由∠BAC=90°,AB=AC,可知,把△ABM绕点A逆时针旋转90°后,AB与AC重合,设点M的对应点是点E.
于是,由图形旋转的性质,得AM=AE,∠BAM=∠EAN.
抄完了给评个最佳吧!
展开全部
http://zhidao.baidu.com/question/222932338.html?an=0&si=2
做CF垂直CM,并使CF=CN,连接AF,MF;
角ACM+NCB=45,角ACM+ACF=45;则角ACF=BCN;又因AC=BC,NC=FC;
则三角形BCN≌ACF;
即角CAF=CBN=45,BN=AF;
三角形CMF≌CMN(CM=CM,CN=CF,角MCN=MCF=45);
即MN=MF;
因角CAF=45,CAM=45;则三角形AMF是直角三角形;
即AF²+AM²=MF²
又因AF=BN,MF=MN;
则MN^2=BM^2+NC^2
做CF垂直CM,并使CF=CN,连接AF,MF;
角ACM+NCB=45,角ACM+ACF=45;则角ACF=BCN;又因AC=BC,NC=FC;
则三角形BCN≌ACF;
即角CAF=CBN=45,BN=AF;
三角形CMF≌CMN(CM=CM,CN=CF,角MCN=MCF=45);
即MN=MF;
因角CAF=45,CAM=45;则三角形AMF是直角三角形;
即AF²+AM²=MF²
又因AF=BN,MF=MN;
则MN^2=BM^2+NC^2
参考资料: http://zhidao.baidu.com/question/212976064.html?an=0&si=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.
∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.
∵CE⊥BC,∴∠ACE=∠B=45°.
在△ABM和△ACE中, {AB=AC∠B=∠ACEBM=CE
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.(1分)
在△MAN和△EAN中, {AM=AE∠MAN=∠EANAN=AN
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.
即得MN2=BM2+NC2.
另证:由∠BAC=90°,AB=AC,可知,把△ABM绕点A逆时针旋转90°后,AB与AC重合,设点M的对应点是点E.
于是,由图形旋转的性质,得AM=AE,∠BAM=∠EAN
∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.
∵CE⊥BC,∴∠ACE=∠B=45°.
在△ABM和△ACE中, {AB=AC∠B=∠ACEBM=CE
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.(1分)
在△MAN和△EAN中, {AM=AE∠MAN=∠EANAN=AN
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.
即得MN2=BM2+NC2.
另证:由∠BAC=90°,AB=AC,可知,把△ABM绕点A逆时针旋转90°后,AB与AC重合,设点M的对应点是点E.
于是,由图形旋转的性质,得AM=AE,∠BAM=∠EAN
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询