若a.b.c为有理数,且|a|/a+|b|/b+|c|/c=1,求|abc|/abc的值
展开全部
因为|a|/a+|b|/b+|c|/c=1
所以abc中必定2正一负
所以|abc|/abc=-1
所以abc中必定2正一负
所以|abc|/abc=-1
追问
再详细点,我要做在资料上
追答
既然abc2正一负,那么abc必定为负数,而|abc|为正数
所以等于-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
三个数各自绝对值与其自身的比的和为1(应该是两个正1一个负1),说明这三个数是正正负,那么这道题目的结果自然是负1了
更多追问追答
追问
你错了,是-1才对啊
追答
哦哦 算错了
|abc|/abc=|a|/a*|bc|/b c=(1-|b|/b-|c|/c)*|bc|/bc=|bc|/bc-|b2c|/b2c-|c2
b|/c2b b2>0 c2>0 所以=|bc|/bc-|b|/b-|c|/c 如果bc同正 |b|/b+|c|/c= 2上个式子就变成了1-2=-1
如果bc同正 很明显|a|/a+|b|/b+|c|/c=1不成立
如果bc异号 |b|/b+|c|/c =0,|bc|/bc=-1 式子就变成了0-1=-1
则得解上式=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询