高数高手来算这个,1+(1+2)+(1+2+3)+...+(1+2+3+...+n)这个怎么算?

 我来答
穿着校服打秋千
2015-07-16 · TA获得超过3.3万个赞
知道大有可为答主
回答量:2338
采纳率:87%
帮助的人:338万
展开全部
1=(1+1)1/2
1+2=(1+2)2/2
1+2+3=(1+3)3/2
1+2+3+4=(1+3)3/2
1+2+3+...+n=(1+n)n/2
题目转化为求数列{(1+n)n/2}的前n项和
而(1+n)n/2=n/2+n²/2
所以
S=1+(1+2)+(1+2+3)+(1+2+3+4)+...+(1+2+3+...+n)
=1/2+1²/2+2/2+2²/2+3/2+3²/2+…+n/2+n²/2
=(1+2+3+…+n)/2+(1²+2²+3²+…+n²)/2
=(1+n)n/4+n(n+1)(2n+1)/12
=n(n+1)(2n+4)/12
=n(n+1)(n+2)/6
满意请采纳
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式