已知数列an的各项均为正数,前n项和为sn,且sn=an(an+1)/2,n为正整数 求证 1.数列an是等差数列

2.设bn=1/2sn,tn=b1+b2+!+bn,求tn... 2.设bn=1/2sn,tn=b1+b2+!+bn,求tn 展开
AngelisI
推荐于2016-12-02 · TA获得超过3.1万个赞
知道大有可为答主
回答量:6588
采纳率:83%
帮助的人:3231万
展开全部
sn=an(an+1)/2
s(n-1)=a(n-1) (a(n-1)+1)/2
两式相减
an = an(an+1)/2-a(n-1) (a(n-1)+1)/2
an^2-an-a^2(n-1) -a(n-1) =0
(an-a(n-1))(an+a(n-1))-(an+a(n-1))=0
(an-a(n-1)-1)(an+a(n-1))=0
因为an的各项均为正数
所以an-a(n-1)-1=0
即an-a(n-1)=1
所以是等差数列

2)a1=a1(a1+1)/2 a1=1 由第一问得到an=n
bn=1/2sn=1/an(an+1)=1/an-1/(an+1)=1-1/2
所以tn=1-1/2+1/2-1/3+1/3-1/4+...+1/an-1/an+1
=1-1/an+1
=an/an+1
=n/n+1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式