已知函数f(x)=x³-3ax²+2bx过点P(1,-1),且曲线y=f(x)在点P处的切线与y轴垂直

(1)求a、b(2)求f(x)的单调区间... (1)求a、b
(2)求f(x)的单调区间
展开
宇文仙
2011-10-12 · 知道合伙人教育行家
宇文仙
知道合伙人教育行家
采纳数:20989 获赞数:115018
一个数学爱好者。

向TA提问 私信TA
展开全部
(1)
f(x)=x³-3ax²+2bx
f'(x)=3x²-6ax+2b
因为f(x)过点P(1,-1),且曲线y=f(x)在点P处的切线与y轴垂直
那么-1=1-3a+2b,f'(1)=3-6a+2b=0
解得a=1/3,b=-1/2
(2)f(x)=x³-x²-x
f'(x)=3x²-2x-1
令f'(x)>0得x<-1/3或x>1
f'(x)<0得-1/3<x<1
所以f(x)的单调递增区间是(-∞,-1/3)和(1,+∞)
单调递减区间是(-1/3,1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
梁上天
2011-10-12 · TA获得超过6861个赞
知道小有建树答主
回答量:1777
采纳率:0%
帮助的人:1435万
展开全部
因为函数f(x)=x³-3ax²+2bx过点P(1,-1),所以
-1=1^3-3*a*1+2b,f‘(x)=3x^2-6ax+2b,因为曲线y=f(x)在点P处的切线与y轴垂直,所以
f’(1)=0=3-6a+2b,解得a=1/3,b=-1/2,所以
y=x^3-x^2-x,
因为当y‘=3x^2-2x-1>0,得到x>1或x<-1/3时函数y=x^3-x^2-x是增函数;
当y‘=3x^2-2x-1<0,即-1/3<x<1时,函数是减函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zssgdhr
2011-10-12 · TA获得超过5122个赞
知道大有可为答主
回答量:1100
采纳率:0%
帮助的人:558万
展开全部
(1)因为函数过点(1,-1)
所以1-3a+2b=-1 ①
f'(x)=3x²-6ax+2b
因为曲线y=f(x)在点P处的切线与y轴垂直
所以f'(1)=0
那么3-6a+2b=0 ②
由①②解得a=1/3,b=-1/2

(2)f'(x)=3x²-2x-1
f'(x)>0时,得x<-1/3或x>1
f'(x)<0时,得-1/3<x<1
那么f(x)的单调递增区间为(-∞,-1/3)和(1,+∞),单调递减区间为(-1/3,1)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式