函数f(x)=xsinx的导数
(-xcosx+sinx+C)'=-cosx+xsinx+cosx=xsinx
如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数。
如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数。
若将一点扩展成函数f(x)在其定义域包含的某开区间I内每一个点,那么函数f(x)在开区间内可导,这时对于内每一个确定的值,都对应着f(x)的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数f(x)的导函数,记作:y'或者f′(x)。
函数f(x)在它的每一个可导点x。处都对应着一个唯一确定的数值——导数值f′(x),这个对应关系给出了一个定义在f(x)全体可导点的集合上的新函数,称为函数f(x)的导函数,记为f′(x)。
扩展资料:
和差积商函数的导函数
[f(x) + g(x)]' = f'(x) + g'(x)
[f(x) - g(x)]' = f'(x) - g'(x)
[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)
[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)] / [g(x)^2]
复合函数的导函数
设 y=u(t) ,t=v(x),则 y'(x) = u'(t)v'(x) = u'[v(x)] v'(x)
例 :y = t^2 ,t = sinx ,则y'(x) = 2t * cosx = 2sinx*cosx = sin2x
1.极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。
2.函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。
3.极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值。
f‘(x)=sinx+xcosx
请采纳正确答案,你们只提问,不采纳正确答案,回答都没有劲!谢谢管理员推荐采纳!!
朋友,请【采纳答案】,您的采纳是我答题的动力,如果没有明白,请追问。谢谢。
2016-04-20 · 知道合伙人教育行家
知道合伙人教育行家
向TA提问 私信TA
f'(x)=x'sinx+xsin'x
f'(x)=sinx+xcosx